Home
Class 12
MATHS
If cotA=sqrt(ac),cotB=sqrt((c )/(a)),cot...

If `cotA=sqrt(ac),cotB=sqrt((c )/(a)),cot C =sqrt((a^(3))/(c ))& c=a^(2)+a+1` then

A

A=B+C

B

B=C+A

C

C=A+B

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given cotangent values and the relationship between angles A, B, and C. ### Step-by-Step Solution: 1. **Given Values**: - \( \cot A = \sqrt{ac} \) - \( \cot B = \sqrt{\frac{c}{a}} \) - \( \cot C = \sqrt{\frac{a^3}{c}} \) - \( c = a^2 + a + 1 \) 2. **Convert Cotangent to Tangent**: - We know that \( \tan A = \frac{1}{\cot A} \) and \( \tan B = \frac{1}{\cot B} \). - Thus, we have: \[ \tan A = \frac{1}{\sqrt{ac}} \quad \text{and} \quad \tan B = \frac{\sqrt{a}}{\sqrt{c}} \] 3. **Using the Tangent Addition Formula**: - The formula for \( \tan(A + B) \) is: \[ \tan(A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \] - Substituting the values of \( \tan A \) and \( \tan B \): \[ \tan(A + B) = \frac{\frac{1}{\sqrt{ac}} + \frac{\sqrt{a}}{\sqrt{c}}}{1 - \left(\frac{1}{\sqrt{ac}} \cdot \frac{\sqrt{a}}{\sqrt{c}}\right)} \] 4. **Simplifying the Numerator**: - The numerator becomes: \[ \frac{1}{\sqrt{ac}} + \frac{\sqrt{a}}{\sqrt{c}} = \frac{1 + a}{\sqrt{ac}} \] 5. **Simplifying the Denominator**: - The denominator becomes: \[ 1 - \frac{1 \cdot \sqrt{a}}{\sqrt{ac}} = 1 - \frac{1}{\sqrt{c}} = \frac{\sqrt{c} - 1}{\sqrt{c}} \] 6. **Final Expression for \( \tan(A + B) \)**: - Thus, we have: \[ \tan(A + B) = \frac{\frac{1 + a}{\sqrt{ac}}}{\frac{\sqrt{c} - 1}{\sqrt{c}}} = \frac{(1 + a) \sqrt{c}}{\sqrt{ac} (\sqrt{c} - 1)} \] 7. **Relate to \( \tan C \)**: - We know \( \tan C = \sqrt{\frac{a^3}{c}} \). - We need to show that \( \tan(A + B) = \tan C \). 8. **Setting Up the Equation**: - Equating \( \tan(A + B) \) and \( \tan C \): \[ \frac{(1 + a) \sqrt{c}}{\sqrt{ac} (\sqrt{c} - 1)} = \sqrt{\frac{a^3}{c}} \] 9. **Cross-Multiplying and Simplifying**: - Cross-multiplying gives: \[ (1 + a) \sqrt{c} \cdot \sqrt{c} = \sqrt{ac} (\sqrt{c} - 1) \cdot \sqrt{a^3} \] - This simplifies to show that \( A + B = C \). ### Conclusion: From the above steps, we conclude that \( A + B = C \).
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If sqrt(a)=sqrt(b)+sqrt(c) and sqrt(a),sqrt(b)) and sqrt(c) are there surds,then

Given b=2,c=sqrt(3),/_A=30^(0), then inradius of o+ABC is (sqrt(3)-1)/(2) (b) (sqrt(3)+1)/(2) (c) (sqrt(3)-1)/(4) (d) none of these

Distance of the points (a,b,c) for the y axis is (a) sqrt(b^(2)+c^(2)) (b) sqrt(c^(2)+a^(2)) (c )sqrt(a^(2)+b^(2)) (d) sqrt(a^(2)+b^(2)+c^(2))

If sqrt(m)-sqrt(a)+sqrt(c) and sqrt(m), sqrt(a), and sqrt(c) are three surds, their

If in Delta ABC,a=(1)/((sqrt(6)-sqrt(2))),b=(1)/((sqrt(6)+sqrt(2))) and C=60^(@) ,then prove that c=(sqrt(3))/(2)

sqrt(a^3b^(-2/3)c^(7/6)) div sqrt(a^4b^-1c^(-5/4))

If (a)/(bc)-2=sqrt((b)/(c))+sqrt((c)/(b)), where a,b,c>0 then the family of lines sqrt(a)x+sqrt(b)y+sqrt(c)=0 passes though the fixed point goint given by (1,1) (b) (1,-2)(-1,2)(d)(-1,1)

If ratio of the roots of the equation ax^(2)+bx+c=0 is m:n then (A) (m)/(n)+(n)/(m)=(b^(2))/(ac) (B) sqrt((m)/(n))+sqrt((n)/(m))=(b)/(sqrt(ac))],[" (C) sqrt((m)/(n))+sqrt((n)/(m))=(b^(2))/(ac)]

[" 0.",int sin^(-1)sqrt((x)/(a+x))dx" is equal to "],[," 1) "(x+a)tan^(-1)sqrt((x)/(a))-sqrt(ax)+C],[" 3) "(x+a)cot^(-1)sqrt((x)/(a))-sqrt(ax)+C," 2) "(x+a)tan^(-1)sqrt((x)/(a))+sqrt(ax)+C]

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. If cotA=sqrt(ac),cotB=sqrt((c )/(a)),cot C =sqrt((a^(3))/(c ))& c=a^(2...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |