Home
Class 12
MATHS
The general solution of equation Sigma(r...

The general solution of equation `Sigma_(r=1)^(n) cos(r^(2)theta)sin(rtheta)=(1)/(2)` is

A

`(4K-1)/(n(n+1))(pi)/(2),KinZ`

B

`(2K+1)/(n(n+1))(pi)/(2),KinZ`

C

`(4K+1)/(n(n+1))(pi)/(2),KinZ`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \sum_{r=1}^{n} \cos(r^2 \theta) \sin(r \theta) = \frac{1}{2}, \] we will follow a systematic approach. ### Step 1: Use the Product-to-Sum Identity We start by applying the product-to-sum identities. The identity we will use is: \[ \cos A \sin B = \frac{1}{2} [\sin(A + B) - \sin(A - B)]. \] In our case, let \( A = r^2 \theta \) and \( B = r \theta \). Thus, we can rewrite the summation: \[ \cos(r^2 \theta) \sin(r \theta) = \frac{1}{2} [\sin((r^2 + r)\theta) - \sin((r^2 - r)\theta)]. \] ### Step 2: Substitute into the Summation Substituting this back into the summation gives: \[ \sum_{r=1}^{n} \cos(r^2 \theta) \sin(r \theta) = \frac{1}{2} \sum_{r=1}^{n} [\sin((r^2 + r)\theta) - \sin((r^2 - r)\theta)]. \] ### Step 3: Split the Summation We can split the summation into two parts: \[ \frac{1}{2} \left( \sum_{r=1}^{n} \sin((r^2 + r)\theta) - \sum_{r=1}^{n} \sin((r^2 - r)\theta) \right) = \frac{1}{2}. \] ### Step 4: Simplify the Expression Now we need to analyze the two sums. Notice that: 1. The first sum involves \( \sin((r^2 + r)\theta) \). 2. The second sum involves \( \sin((r^2 - r)\theta) \). ### Step 5: Evaluate the Sums To evaluate these sums, we can use the properties of sine functions and their periodic nature. The key is to find the values of \( \theta \) such that the entire expression equals \( \frac{1}{2} \). ### Step 6: Set Up the Equation From the equation we have: \[ \frac{1}{2} \left( \sum_{r=1}^{n} \sin((r^2 + r)\theta) - \sum_{r=1}^{n} \sin((r^2 - r)\theta) \right) = \frac{1}{2}. \] This simplifies to: \[ \sum_{r=1}^{n} \sin((r^2 + r)\theta) - \sum_{r=1}^{n} \sin((r^2 - r)\theta) = 1. \] ### Step 7: Solve for \( \theta \) To solve for \( \theta \), we can set: \[ \sin(n^2 \theta + n \theta) = 4k + 1 \cdot \frac{\pi}{2}, \] where \( k \) is an integer. This leads to: \[ n^2 \theta + n \theta = (4k + 1) \frac{\pi}{2}. \] ### Step 8: Isolate \( \theta \) Rearranging gives: \[ \theta = \frac{(4k + 1) \frac{\pi}{2}}{n(n + 1)}. \] ### Final Solution Thus, the general solution for \( \theta \) is: \[ \theta = \frac{(4k + 1) \pi}{2n(n + 1)}, \quad k \in \mathbb{Z}. \]

To solve the equation \[ \sum_{r=1}^{n} \cos(r^2 \theta) \sin(r \theta) = \frac{1}{2}, \] we will follow a systematic approach. ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

Find the general solution of the equation 5cos^(2)theta+7sin^(2)theta-6=0 .

The general solution of the equation sin theta + cos theta = 1 is theta =

The general solution of the equation sin theta=cos theta is

Find the number of solution of the equation tan (Sigma_(r=1)^(5) cot^(-1) (2r^(2))) = (5x+6)/(6x+5) .

The general solution of the equation sin^(2)x cos^(2)x+sin x cos x-1=0 is

The number of solution of the equation Sigma_(r=1)^(5)cos(rx)=0 lying in (0, pi) is

The general solution of the equations tan theta=-1 and cos theta=(1)/(sqrt(2)) is

Find the general solution of simultaneous equation sin theta=(1)/(2),tan theta=(1)/(sqrt(3))

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. The general solution of equation Sigma(r=1)^(n) cos(r^(2)theta)sin(rth...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |