Home
Class 12
MATHS
In DeltaABC, sinA, sinB and sinC are in ...

In `DeltaABC`, sinA, sinB and sinC are in AP, then ex-radii `r_(1),r_(2)` and `r_(3)` will be in

A

AP

B

GP

C

HP

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to establish the relationship between the ex-radii \( r_1, r_2, \) and \( r_3 \) of triangle \( ABC \) given that \( \sin A, \sin B, \sin C \) are in arithmetic progression (AP). ### Step-by-Step Solution: 1. **Understanding the Condition**: Since \( \sin A, \sin B, \sin C \) are in AP, we can express this condition mathematically: \[ 2 \sin B = \sin A + \sin C \] 2. **Using the Sine Rule**: According to the sine rule in triangle \( ABC \): \[ \frac{A}{\sin A} = \frac{B}{\sin B} = \frac{C}{\sin C} = k \quad (\text{where } k \text{ is a constant}) \] Therefore, we can express \( \sin A, \sin B, \sin C \) in terms of \( A, B, C \): \[ \sin A = \frac{A}{k}, \quad \sin B = \frac{B}{k}, \quad \sin C = \frac{C}{k} \] 3. **Substituting into the AP Condition**: Substitute the expressions for \( \sin A, \sin B, \sin C \) into the AP condition: \[ 2 \left(\frac{B}{k}\right) = \frac{A}{k} + \frac{C}{k} \] Simplifying gives: \[ 2B = A + C \] 4. **Finding the Ex-radii**: The ex-radii \( r_1, r_2, r_3 \) are given by: \[ r_1 = \frac{\Delta}{s - A}, \quad r_2 = \frac{\Delta}{s - B}, \quad r_3 = \frac{\Delta}{s - C} \] where \( \Delta \) is the area of the triangle and \( s \) is the semi-perimeter: \[ s = \frac{A + B + C}{2} \] 5. **Expressing \( s - A, s - B, s - C \)**: From the semi-perimeter \( s \): \[ s - A = \frac{B + C - A}{2}, \quad s - B = \frac{A + C - B}{2}, \quad s - C = \frac{A + B - C}{2} \] 6. **Finding the Relationship Between Ex-radii**: Now we can express \( \frac{1}{r_1}, \frac{1}{r_2}, \frac{1}{r_3} \): \[ \frac{1}{r_1} = \frac{s - A}{\Delta}, \quad \frac{1}{r_2} = \frac{s - B}{\Delta}, \quad \frac{1}{r_3} = \frac{s - C}{\Delta} \] 7. **Substituting the Values**: Substitute \( s - A, s - B, s - C \) into the equations: \[ \frac{1}{r_1} + \frac{1}{r_3} = \frac{(B + C - A) + (A + B - C)}{2\Delta} = \frac{2B}{2\Delta} = \frac{B}{\Delta} \] Thus, we find: \[ \frac{1}{r_1} + \frac{1}{r_3} = \frac{B}{\Delta} \] 8. **Conclusion**: From the above relationships, we can conclude that: \[ \frac{1}{r_1}, \frac{1}{r_2}, \frac{1}{r_3} \text{ are in Harmonic Progression (HP)} \] Therefore, \( r_1, r_2, r_3 \) are in Harmonic Progression.

To solve the problem, we need to establish the relationship between the ex-radii \( r_1, r_2, \) and \( r_3 \) of triangle \( ABC \) given that \( \sin A, \sin B, \sin C \) are in arithmetic progression (AP). ### Step-by-Step Solution: 1. **Understanding the Condition**: Since \( \sin A, \sin B, \sin C \) are in AP, we can express this condition mathematically: \[ 2 \sin B = \sin A + \sin C ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

If in aDeltaABC,sinA,sinb,sinC are in A.P ., then

In a DeltaABC, sin A sinB sinC is

If a,b,c are in AP, then show that r_(1), r_(2), r_(3) are in HP.

In DeltaABC , prove that: sinB+sinC gt sinA

If a DeltaABC , the value of sinA+sinB+sinC is

In DeltaABC , cosC=(sinA)/(2sinB) , prove that b=c.

In a DeltaABC, r_(1) + r_(2) + r_(3) -r =

In a /_\ABC (with usual notations) if ex-radii r_(1) , r_(2) , r_(3) are in H.P then (a+c)/b is

If DeltaABC is right angled at A,then r_(2)+r_(3) =

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. In DeltaABC, sinA, sinB and sinC are in AP, then ex-radii r(1),r(2) an...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |