Home
Class 12
MATHS
Let vec(a),vec(b) and vec(c ) be three ...

Let `vec(a),vec(b)` and `vec(c )` be three non-coplaner vectors and `vec(p),vec(q),vec(r)` be three vectors such that `vec(p)=2vec(a)-vec(b)+vec(c ),vec(q)=vec(a)-3vec(b)+2vec(c),vec(r)=vec(a)+vec(b)-vec(c )`. If `[vec(a)vec(b)vec(c)]=2` then `[vec(p)vec(q)vec( r)]` equals

A

6

B

-6

C

3

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the scalar triple product \([ \vec{p}, \vec{q}, \vec{r} ]\) given the vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) expressed in terms of the non-coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We know that \([ \vec{a}, \vec{b}, \vec{c} ] = 2\). ### Step 1: Write the expressions for \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) Given: \[ \vec{p} = 2\vec{a} - \vec{b} + \vec{c} \] \[ \vec{q} = \vec{a} - 3\vec{b} + 2\vec{c} \] \[ \vec{r} = \vec{a} + \vec{b} - \vec{c} \] ### Step 2: Compute \(\vec{p} \times \vec{q}\) To find \([ \vec{p}, \vec{q}, \vec{r} ]\), we first need to compute \(\vec{p} \times \vec{q}\): \[ \vec{p} \times \vec{q} = (2\vec{a} - \vec{b} + \vec{c}) \times (\vec{a} - 3\vec{b} + 2\vec{c}) \] Using the distributive property of the cross product: \[ \vec{p} \times \vec{q} = 2\vec{a} \times \vec{a} - 6\vec{a} \times \vec{b} + 4\vec{a} \times \vec{c} - \vec{b} \times \vec{a} + 3\vec{b} \times \vec{b} - 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a} - 3\vec{c} \times \vec{b} + 2\vec{c} \times \vec{c} \] Since the cross product of any vector with itself is zero: \[ \vec{p} \times \vec{q} = -6\vec{a} \times \vec{b} + 4\vec{a} \times \vec{c} - \vec{b} \times \vec{a} - 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a} - 3\vec{c} \times \vec{b} \] ### Step 3: Simplify the expression Using the property \(\vec{x} \times \vec{y} = -(\vec{y} \times \vec{x})\): \[ \vec{p} \times \vec{q} = -6\vec{a} \times \vec{b} + 4\vec{a} \times \vec{c} + \vec{a} \times \vec{b} - 2\vec{b} \times \vec{c} + \vec{c} \times \vec{a} - 3\vec{b} \times \vec{c} \] Combining like terms: \[ \vec{p} \times \vec{q} = (-6 + 1)\vec{a} \times \vec{b} + (4 + 1)\vec{a} \times \vec{c} + (-2 - 3)\vec{b} \times \vec{c} \] \[ = -5\vec{a} \times \vec{b} + 5\vec{a} \times \vec{c} - 5\vec{b} \times \vec{c} \] ### Step 4: Compute \([ \vec{p}, \vec{q}, \vec{r} ]\) Now we compute: \[ [ \vec{p}, \vec{q}, \vec{r} ] = \vec{p} \times \vec{q} \cdot \vec{r} \] Substituting \(\vec{r} = \vec{a} + \vec{b} - \vec{c}\): \[ [ \vec{p}, \vec{q}, \vec{r} ] = (-5\vec{a} \times \vec{b} + 5\vec{a} \times \vec{c} - 5\vec{b} \times \vec{c}) \cdot (\vec{a} + \vec{b} - \vec{c}) \] Calculating the dot products: 1. \((-5\vec{a} \times \vec{b}) \cdot \vec{a} = 0\) 2. \((-5\vec{a} \times \vec{b}) \cdot \vec{b} = 0\) 3. \((-5\vec{a} \times \vec{b}) \cdot (-\vec{c}) = 5(\vec{a} \times \vec{b}) \cdot \vec{c} = 5[ \vec{a}, \vec{b}, \vec{c} ] = 10\) 4. \((5\vec{a} \times \vec{c}) \cdot \vec{a} = 0\) 5. \((5\vec{a} \times \vec{c}) \cdot \vec{b} = 5(\vec{a} \times \vec{c}) \cdot \vec{b} = -5[ \vec{a}, \vec{b}, \vec{c} ] = -10\) 6. \((5\vec{a} \times \vec{c}) \cdot (-\vec{c}) = 0\) 7. \((-5\vec{b} \times \vec{c}) \cdot \vec{a} = -5(\vec{b} \times \vec{c}) \cdot \vec{a} = 5[ \vec{a}, \vec{b}, \vec{c} ] = 10\) 8. \((-5\vec{b} \times \vec{c}) \cdot \vec{b} = 0\) 9. \((-5\vec{b} \times \vec{c}) \cdot (-\vec{c}) = 0\) ### Step 5: Combine results Combining all the contributions: \[ [ \vec{p}, \vec{q}, \vec{r} ] = 10 - 10 + 10 = 10 \] ### Final Result Thus, the value of \([ \vec{p}, \vec{q}, \vec{r} ]\) is: \[ \boxed{10} \]

To solve the problem, we need to find the scalar triple product \([ \vec{p}, \vec{q}, \vec{r} ]\) given the vectors \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) expressed in terms of the non-coplanar vectors \(\vec{a}\), \(\vec{b}\), and \(\vec{c}\). We know that \([ \vec{a}, \vec{b}, \vec{c} ] = 2\). ### Step 1: Write the expressions for \(\vec{p}\), \(\vec{q}\), and \(\vec{r}\) Given: \[ \vec{p} = 2\vec{a} - \vec{b} + \vec{c} \] ...
Promotional Banner

Topper's Solved these Questions

  • TEST PAPERS

    VIBRANT|Exercise PART-II : MATHEMATICS|20 Videos
  • TEST PAPERS

    VIBRANT|Exercise PART - I : MATHEMATICS|60 Videos

Similar Questions

Explore conceptually related problems

Let vec(p),vec(q),vec(r) be three unit vectors such that vec(p)xxvec(q)=vec(r) . If vec(a) is any vector such that [vec(a)vec(q)vec(r )]=1,[vec(a)vec(r)vec(p )]=2 , and [vec(a)vec(p)vec(q )]=3 , then vec(a)=

Let vec(a), vec(b), vec(c) be non-coplanar vectors and vec(p)=(vec(b)xxvec(c))/([vec(a)vec(b)vec(c)]), vec(q)=(vec(c)xxvec(a))/([vec(a)vec(b)vec(c)]), vec(r)=(vec(a)xxvec(b))/([vec(a)vec(b)vec(c)]) . What is the value of (vec(a)-vec(b)-vec(c)).vec(p)+(vec(b)-vec(c)-vec(a)).vec(q)+(vec(c)-vec(a)-vec(b)).vec(r) ?

If vec(a),vec(b) and vec(c ) are three vectors such that vec(a)+vec(b)+vec(c )=vec(0) and |vec(a)|=2,|vec(b)|=3 and |vec(c )|=5 , then the value of vec(a)*vec(b)+vec(b)*vec(c)+vec(c)*vec(a) is

Let vec(a), vec(b) and vec(c) be three vectors such that vec(a) + vec(b) + vec(c) = 0 and |vec(a)|=10, |vec(b)|=6 and |vec(c) |=14 . What is vec(a). vec(b) + vec(b).vec(c)+ vec(c). vec(a) . equal to ?

Let vec(a), vec(b) and vec(c) be three mutually perpendicular vectors each of unit magnitud. If vec(A)=vec(a)+vec(b)+vec(c), vec(B)=vec(a)-vec(b)+vec(c) and vec(C)=vec(a)-vec(b)-vec(c) , then which one of the following is correct?

If vec(a) , vec(b) and vec(c ) be three vectors such that vec(a) + vec(b) + vec(c )=0 and |vec(a)|=3, |vec(b)|=5,|vec(C )|=7 , find the angle between vec(a) and vec(b) .

If vec a,vec b,vec c be any three non-zero non coplanar vectors and vectors vec p=(vec b xx vec c)/(vec a.vec b xx vec c),vec q=(vec c xx vec a)/(vec a.vec b xx vec c) vec r=(vec a xx vec b)/(veca.vec b xx vec c), then [vec p vec q vec r] equals -

Let veca , vecb, vec c be three non coplanar vectors , and let vecp , vecq " and " vec r be the vectors defined by the relation vecp = (vecb xx vec c )/([veca vecb vec c ]), vec q = (vec c xx vec a)/([veca vecb vec c ]) " and " vec r = (vec a xx vec b)/([veca vecb vec c ]) Then the value of the expension (vec a + vec b) .vec p + (vecb + vec c) .q + (vec c + vec a) . vec r is equal to

If vec a,vec b and vec c are three non-zero vectors,prove that [vec a+vec b,vec b+vec c,vec c+vec a]=2[vec a,vec b,vec c]

VIBRANT-TEST PAPERS-PART - I : MATHEMATICS
  1. Let vec(a),vec(b) and vec(c ) be three non-coplaner vectors and vec(p...

    Text Solution

    |

  2. Suppose a,b in R. If the equation x^(2)-(2a+b)x+(2a^(2)+b^(2)-b+1//2)=...

    Text Solution

    |

  3. If alpha, beta are roots of x^(2)-2x-1=0, then value of 5alpha^(4)+12b...

    Text Solution

    |

  4. If 3p^(2)=5p+2 and 3q^(2)=5q+2 then the equation whose roots 3p-2p an...

    Text Solution

    |

  5. If 1 - p is a root of the quadratic equation x^(2) + px + 1- p = 0 , ...

    Text Solution

    |

  6. Sum of the series P=(1)/(2sqrt(1)+sqrt(2))+(1)/(3sqrt(2)+2sqrt(3))+......

    Text Solution

    |

  7. If a,b, c are in H.P. then a-(b)/(2),(b)/(2),c-(b)/(2) are in

    Text Solution

    |

  8. Sum of the series Sigma(r=1)^(n) rlog((r+1)/(r)) is

    Text Solution

    |

  9. Suppose for each n in N, 1^(4)+2^(4)+.........n^(4)=an^(5)+bn^(4)+cn^(...

    Text Solution

    |

  10. For any two complex numbers z1,z2 and any real numbers aa n db ,|a z1-...

    Text Solution

    |

  11. If (x+iy)^(1//3)=a+ib, " then " (x)/(a)+(y)/(b) equals

    Text Solution

    |

  12. The number of complex numbers z such that |z-1|=|z+1|=|z-i| is

    Text Solution

    |

  13. If |w|=2, then the set of points x+iy=w-(1)/(w) lie on

    Text Solution

    |

  14. If Delta(1)=|(x,b,b),(a,x,b),(a,a,x)|" and "Delta(2)=|(x,b),(a,x)|, th...

    Text Solution

    |

  15. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  16. Given, 2x - y + 2z = 2, x - 2y + z = -4, x + y+ lamda z = 4,then the v...

    Text Solution

    |

  17. Let A be a 3xx3 matrix such that A [(1,2,3),(0,2,3),(0,1,1)]=[(0,0,1),...

    Text Solution

    |

  18. Let A =[(1,1,0),(0,1,0),(0,0,1)] and let I denote the 3xx3 identity ma...

    Text Solution

    |

  19. If the standard deviation of the binomial distribution (q + p)^16 is 2...

    Text Solution

    |

  20. Suppose I+A is non-singular. Let B=(l+A)^(-1) and C=l-A, then ……. (wh...

    Text Solution

    |

  21. The number of ways of arranging 18 boys so that 3 particular boys are ...

    Text Solution

    |