Home
Class 12
MATHS
The identity matrix I(2)={:[(1,0),(0,1)]...

The identity matrix `I_(2)={:[(1,0),(0,1)]:}`. If `A={:[(2,-3),(5,1)]:}`, evaluate `AI_(2)=I_(2)A=A`

Text Solution

AI Generated Solution

To solve the problem, we need to evaluate the product of matrix \( A \) with the identity matrix \( I_2 \) and also the product of the identity matrix \( I_2 \) with matrix \( A \). We will show that both products yield the matrix \( A \). ### Given: - Identity matrix \( I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \) - Matrix \( A = \begin{pmatrix} 2 & -3 \\ 5 & 1 \end{pmatrix} \) ### Step 1: Calculate \( AI_2 \) ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

(i) if A=[{:(1,0),(0,1):}],B=[{:(0,1),(1,0):}]and C=[{:(1,0),(0,1):}], then show that A^(2)=B^(2)=C^(2)=I_(2). (ii) if A=[{:(1,0),(1,1):}],B=[{:(2,0),(1,1):}]and C=[{:(-1,2),(3,1):}], then show that A(B+C)=AB+AC. (iii) if A=[{:(1,-1),(-1,1):}]and B=[{:(1,1),(1,1):}], then show that AB is a zero matrix.

If A=[{:(,3,1),(,-1,2):}] and I=[{:(,1,0),(,0,1):}] ,find A^2-5A+7I .

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

If A=[ (3,-2),( 4 ,-2) ] and I=[(1,0),(0,1)] , then prove that A^2-A+2I=O .

If (A -2I)(A-3I)=0 , when A=[{:(4,2),(-1,x):}] and I=[{:(1,0),(0,1):}] , find the value of x

Find the adjoint of matrix A=[a_(i j)]=|[1, 1, 1], [2, 1,-3],[-1, 2, 3]| .

If I is the unit matrix of order 2 xx 2 find the matrix M, such that (i) M-2I=3 [{:(,-1,0),(,4,1):}] (ii) 5M+3I=4[{:(,2,-5),(,0,-3):}]

If A=[{:(,1,1,2),(,0,2,1),(,1,0,2):}] show that A^(3)=(5A-I)(A-I)

the matrix A=[(i,1-2i),(-1-2i,0)], where I = sqrt-1, is

If A = [ (-3 , 2) , (1, -1)] and I = [(1,0) , (0, 1)] , find the scalar k so that A^2 +I = kA .