Home
Class 12
MATHS
Evaluate x and y if [(x,2),(-3,y)]=2[(x...

Evaluate x and y if `[(x,2),(-3,y)]=2[(x^(2),1),(-(3)/(2),3y-5)]`.

A

`x=0,y=2`

B

`x=1,y=2`

C

`x=-1,1,y=(5)/(3)`

D

`x=0,(1)/(2),y=2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix equality \(\begin{pmatrix} x & 2 \\ -3 & y \end{pmatrix} = 2 \begin{pmatrix} x^2 & 1 \\ -\frac{3}{2} & 3y - 5 \end{pmatrix}\), we will follow these steps: ### Step 1: Expand the Right Side First, we need to multiply the right side of the equation by 2: \[ 2 \begin{pmatrix} x^2 & 1 \\ -\frac{3}{2} & 3y - 5 \end{pmatrix} = \begin{pmatrix} 2x^2 & 2 \\ -3 & 6y - 10 \end{pmatrix} \] ### Step 2: Set Up the Equation Now we can set the two matrices equal to each other: \[ \begin{pmatrix} x & 2 \\ -3 & y \end{pmatrix} = \begin{pmatrix} 2x^2 & 2 \\ -3 & 6y - 10 \end{pmatrix} \] ### Step 3: Equate Corresponding Entries We can equate the corresponding entries of the matrices: 1. From the first row, first column: \[ x = 2x^2 \quad (1) \] 2. From the first row, second column: \[ 2 = 2 \quad (2) \] 3. From the second row, first column: \[ -3 = -3 \quad (3) \] 4. From the second row, second column: \[ y = 6y - 10 \quad (4) \] ### Step 4: Solve for \(x\) From equation (1): \[ x = 2x^2 \] Rearranging gives: \[ 2x^2 - x = 0 \] Factoring out \(x\): \[ x(2x - 1) = 0 \] This gives us two possible solutions: \[ x = 0 \quad \text{or} \quad 2x - 1 = 0 \Rightarrow x = \frac{1}{2} \] ### Step 5: Solve for \(y\) From equation (4): \[ y = 6y - 10 \] Rearranging gives: \[ y - 6y = -10 \Rightarrow -5y = -10 \Rightarrow y = \frac{-10}{-5} = 2 \] ### Final Solutions Thus, we find: - \(x = 0\) or \(x = \frac{1}{2}\) - \(y = 2\) ### Summary of Solutions The solutions are: - \(x = 0\) or \(x = \frac{1}{2}\) - \(y = 2\)

To solve the equation given by the matrix equality \(\begin{pmatrix} x & 2 \\ -3 & y \end{pmatrix} = 2 \begin{pmatrix} x^2 & 1 \\ -\frac{3}{2} & 3y - 5 \end{pmatrix}\), we will follow these steps: ### Step 1: Expand the Right Side First, we need to multiply the right side of the equation by 2: \[ 2 \begin{pmatrix} x^2 & 1 \\ -\frac{3}{2} & 3y - 5 \end{pmatrix} = \begin{pmatrix} 2x^2 & 2 \\ -3 & 6y - 10 \end{pmatrix} \] ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Evaluate x and y if {:[(5,-3),(x,4)]:}={:[(y-3,-3),(2x+2,4)]:} .

Find x, y if [(-2,0),(3,1)][(-1),(2x)]+[(-2),(1)]=2[(y),(3)]

Find the value of x , if [(3x+y,-y),(2y-x,3)]=[(1, 2),(-5, 3)] .

Find the value of x and y (1)/(2x)+(1)/(3y)=2 (1)/(3x)+(1)/(2y)=(13)/(6)

Find x and y if [{:(,3,-2),(,-1,4):}] [{:(,2x),(,1):}] +2 [{:(,-4),(,5):}] =4[{:(,2),(,y):}]

Find x and y if (x^4+2x i)-(3x^2+y i)=(3-5i)+(1+2y i)

Find the value of x from the following: [(2x,-y),(5, 3y)]=[(6, 5 ),(3,-2)]

Find the value of x and y x+2y=2 2x+3y=3

Evaluate (2x-3y+5)^(3) .

Find x and y, if : (i) [{:(,4,3x),(,x,-2):}] [{:(,5),(,1):}]=[{:(,y,8):}] (ii) [{:(,x,0),(,-3,1):}] [{:(,1,1),(,0,y):}]=[{:(,2,2),(,-3,-2):}]