Home
Class 12
MATHS
Find all values of x for which |{:(2,-1,...

Find all values of x for which `|{:(2,-1,4),(3,0,5),(4,1,6):}|=|{:(x,4),(5,x):}|`.

A

`pm3.78`

B

`pm4.47`

C

`pm5.12`

D

`pm6.19`

Text Solution

AI Generated Solution

The correct Answer is:
To find all values of \( x \) for which \[ \left| \begin{array}{ccc} 2 & -1 & 4 \\ 3 & 0 & 5 \\ 4 & 1 & 6 \end{array} \right| = \left| \begin{array}{cc} x & 4 \\ 5 & x \end{array} \right|, \] we will calculate the determinants of both matrices and set them equal to each other. ### Step 1: Calculate the determinant of the first matrix \( D_1 \) The determinant \( D_1 \) of the first matrix can be calculated using the formula for the determinant of a 3x3 matrix: \[ D_1 = a(ei - fh) - b(di - fg) + c(dh - eg) \] For our matrix: \[ \begin{array}{ccc} a = 2 & b = -1 & c = 4 \\ d = 3 & e = 0 & f = 5 \\ g = 4 & h = 1 & i = 6 \end{array} \] Calculating \( D_1 \): \[ D_1 = 2(0 \cdot 6 - 5 \cdot 1) - (-1)(3 \cdot 6 - 5 \cdot 4) + 4(3 \cdot 1 - 0 \cdot 4) \] Calculating each term: 1. \( 2(0 - 5) = 2(-5) = -10 \) 2. \( -(-1)(18 - 20) = 1(-2) = 2 \) 3. \( 4(3 - 0) = 4 \cdot 3 = 12 \) Now combine these results: \[ D_1 = -10 + 2 + 12 = 4 \] ### Step 2: Calculate the determinant of the second matrix \( D_2 \) The determinant \( D_2 \) of the second matrix is calculated as follows: \[ D_2 = \left| \begin{array}{cc} x & 4 \\ 5 & x \end{array} \right| = x \cdot x - 4 \cdot 5 = x^2 - 20 \] ### Step 3: Set the determinants equal to each other Now we set \( D_1 \) equal to \( D_2 \): \[ 4 = x^2 - 20 \] ### Step 4: Solve for \( x \) Rearranging the equation gives: \[ x^2 - 20 - 4 = 0 \implies x^2 - 24 = 0 \] Factoring or using the square root method: \[ x^2 = 24 \implies x = \pm \sqrt{24} = \pm 2\sqrt{6} \] ### Final Values of \( x \) Thus, the values of \( x \) are: \[ x = 2\sqrt{6} \quad \text{and} \quad x = -2\sqrt{6} \]

To find all values of \( x \) for which \[ \left| \begin{array}{ccc} 2 & -1 & 4 \\ 3 & 0 & 5 \\ 4 & 1 & 6 \end{array} \right| = \left| \begin{array}{cc} ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Find all values of x that make |(2,-1,4),(3,0,5),(4,1,6)|=|(x,4),(5,x)|

Find the values of x, if (i) |{:(2,4),(5,1):}|=|{:(2x,4),(6,x):}| (ii) |{:(2,3),(4,5):}|=|{:(x,3),(2x,5):}|

Find values of x , if(i) |(2, 4),( 5, 1)|-|(2x,4),( 6,x)| (ii) |(2, 3),( 4, 5)|-|(x,3),( 2x,5)|

Determine the values of x for which the matrix A= [(x+1,-3 ,4),(-5,x+2, 2) ,(4 ,1,x-6)] is singular.

The set of all values of x for which ((x+1)(x-3)^(2)(x-5)(x-4)^(3)(x-2))/(x) lt 0

Find the value of x if |[2, 1 ,x+1],[-1,3,-4],[0,-5,3]|=0

Find the values of x , if |[2, 4], [5, 1]|=|[2x,4], [6,x]|

Find x and y if [{:(,3,-2),(,-1,4):}] [{:(,2x),(,1):}] +2 [{:(,-4),(,5):}] =4[{:(,2),(,y):}]

find x, if [x" "-5" "-1][{:(1,0,2),(0,2,1),(2,0,3):}][{:(x),(4),(1):}]=0

Find the value of the determinant = |(2, 3, 4),( 5, 6, 8),( 6x,9x ,12 x)|