Home
Class 11
PHYSICS
Prove that vec(a)xx(vec(b)+vec(c))+vec...

Prove that
`vec(a)xx(vec(b)+vec(c))+vec(b)xx(vec(c)+vec(a))+vec(c)xx(vec(a)+vec(b))=0`

Text Solution

AI Generated Solution

To prove the equation \[ \vec{a} \times (\vec{b} + \vec{c}) + \vec{b} \times (\vec{c} + \vec{a}) + \vec{c} \times (\vec{a} + \vec{b}) = 0, \] we will start by expanding each term on the left-hand side (LHS) using the distributive property of the cross product. ...
Promotional Banner

Topper's Solved these Questions

  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise Solved Example|17 Videos
  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise PRACTICE EXERCISE|4 Videos
  • KINETIC THEORY OF GASES

    BANSAL|Exercise Section-B|13 Videos

Similar Questions

Explore conceptually related problems

For any three vectors vec(A), vec(B) and vec(C) prove that vec(A) xx (vec(B) +vec(C)) +vec(B) xx (vec(C) +vec(A)) + vec(C) xx (vec(A) +vec(B)) = vec(O)

Prove that (vec(a)-vec(b)) xx (vec(a) +vec(b))=2(vec(a) xx vec(b))

If vec(a), vec(b), vec(c ) are three vectors such that vec(a)xx vec(b)=vec(c ), vec(b)xx vec(c )=vec(a) , prove that vec(a), vec(b), vec(c ) are mutually at right angles and |vec(b)|=1, |vec(c )|=|vec(a)| .

Prove that : (vec(b)+vec(c )).{(vec(c )+vec(a))xx(vec(a)+vec(b))}=2 [vec(a)vec(b)vec(c )] .

[(vec(a) xx vec(b)) xx (vec(b) xx vec(c)), (vec(b) xx vec(c)) xx (vec(c) xx vec(a)),(vec(c) xx vec(a)) xx (vec(a) xx vec(b))] is equal to

Prove that : {(vec(b)+vec(c ))xx(vec(c )+vec(a))}.(vec(a)+vec(b))=2[vec(a)vec(b)vec(c )]

Prove that : {(vec(b)-vec(c ))xx(vec(c )-vec(a))}.(vec(a)-vec(b))=0 .

The vectors vec(a), vec(b), vec(c) and vec(d) are such that vec(a)xx vec(b) = vec(c) xx d and vec(a) xx vec(c)= vec(b) xx vec(d) . Which of the following is/are correct? 1. (vec(a)-vec(d))xx (vec(b)-vec(c))=vec(0) 2. (vec(a)xx vec(b))xx (vec(c)xx vec(d))=vec(0) Select the correct answer using the code given below :

If vec(a).vec(b)xx vec(c ) ≠ 0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a').(vec(b')xx vec(c'))=(1)/(vec(a).(vec(b)xx vec(c )))

If vec(a).vec(b)xx vec(c )≠0 and vec(a')=(vec(b)xx vec(c ))/(vec(a).vec(b)xx vec(c )), vec(b')=(vec(c )xx vec(a))/(vec(a).vec(b)xx vec(c )), vec(c')=(vec(a)xx vec(b))/(vec(a).vec(b)xx vec(c )) , show that : vec(a).vec(a')+vec(b).vec(b')+vec(c ).vec(c')=3