Home
Class 11
PHYSICS
vec(r)=2that(i)+3tvec(2)hat(j). Find vec...

`vec(r)=2that(i)+3tvec(2)hat(j)`. Find `vec(v)` and `vec(a)` where `vec(v)=(dvec(r))/(dr) , vec(a)=(dvec(v))/(dt)`

Text Solution

AI Generated Solution

To solve the problem, we need to find the velocity vector \(\vec{v}\) and the acceleration vector \(\vec{a}\) from the given position vector \(\vec{r}\). ### Step 1: Write down the position vector The position vector is given as: \[ \vec{r} = 2t \hat{i} + 3t^2 \hat{j} \] ...
Promotional Banner

Topper's Solved these Questions

  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise Solved Example|17 Videos
  • UNIT DIMENSION, VECTOR & BASIC MATHS

    BANSAL|Exercise PRACTICE EXERCISE|4 Videos
  • KINETIC THEORY OF GASES

    BANSAL|Exercise Section-B|13 Videos

Similar Questions

Explore conceptually related problems

The position vector of an object moving in X-Z plane is vec(r)=v_(0)that(i)+a_(0)e^(b_(0)t)hat(k) . Find its (i) velocity (vec(v)=(dvec(r))/(dt)) (ii) speed (|vec(v)|) (iii) Acceleration ((dvec(v))/(dt)) as a function of time.

A particle moves in such a way that its position vector at any time t is vec(r)=that(i)+1/2 t^(2)hat(j)+that(k) . Find as a function of time: (i) The velocity ((dvec(r))/(dt)) (ii) The speed (|(dvec(r))/(dt)|) (iii) The acceleration ((dvec(v))/(dt)) (iv) The magnitude of the acceleration (v) The magnitude of the component of acceleration along velocity (called tangential acceleration) (v) The magnitude of the component of acceleration perpendicular to velocity (called normal acceleration).

If vec(a)= hat(i) - 2hat(j) + 5hat(k) and vec(b) = 2hat(i) + hat(j) -3hat(k) , then (vec(b) - vec(a)).(3 vec(a) +vec(b)) equal to?

Let a and b be positive real numbers . Suppose vec(PQ) = a hat(i) + b hat(j) and vec(PS) = a hat(i) - b hat(j) are adjacent sides of a parallelofram PQRS . Let vec(u) and vec(v) be the vectors of vec(w) = hat(i) + hat(j) along vec(PQ) and vec(PS) respectively . If |vec(u)| + |vec(v)| = |vec(w)| and if the area of the parallelogram PQRS is 8 , then which of the following statements is/are TRUE ?

Let vec(u)=hat(i)-hat(j), vec(v)=2hat(i)+5hat(j), vec(w)= 4 hat(i)+3hat(j) and vec(p) = vec(u) + vec(v)+vec(w) . Which one of the following is correct ?

Let vec( a) = 2 hat(i) - 3 hat(j) + 4 hat(k) and vec( b) = 7 hat(i) + hat(j) - 6 hat(k) . If vec( r ) xx vec( a) = vec( r ) xx vec( b) , vec( r ) . ( hat(i) +2 hat(j) + hat(k)) = -3 , then vec ( r ). ( 2 hat(i)- 3hat(j) + hat(k)) is equal to :

If vec(a)=7hat(i)-2hat(j)+3hat(k), vec(b)=hat(i)-hat(j)+2hat(k), vec(c )=2hat(i)+8hat(j) , then find vec(a).(vec(b)xx vec(c )) and (vec(b)xx vec(c )).vec(a) .

If vec(a)=hat(i)-2hat(j)+5hat(k) and vec(b)=2hat(i)+hat(j)-3hat(k) then what is (vec(b)-vec(a)). (3vec(a)+vec(b)) equal to ?

If vec(a) = hat(i) + hat(j) + 2 hat(k) and vec(b) = 3 hat(i) + 2 hat(j) - hat(k) , find the value of (vec(a) + 3 vec(b)) . ( 2 vec(a) - vec(b)) .