Home
Class 12
MATHS
If the normals at (x(i),y(i)) i=1,2,3,4 ...

If the normals at `(x_(i),y_(i)) i=1,2,3,4` to the rectangular hyperbola `xy=2` meet at the point `(3,4)` then

A

`x_(1)+x_(2)+x_(3)+x_(4)=3`

B

`y_(1)+y_(2)+y_(3)+y_(4)=4`

C

`y_(1)y_(2)y_(3)y_(4)=4`

D

`x_(1)x_(2)x_(3)x_(4)=-4`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D

Any point on `xy=2` is `P(sqrt(2)t,(sqrt(2))/t)`
Normal at `P` is `y-(sqrt(2))/t=t^(2)(x-sqrt(2)t)`
`4t-sqrt(2)=t^(3)-sqrt(2)t`
`sqrt(2)t^(4)-3t^(3)+4t-sqrt(2)=0`
`t_(1)+t_(2)+t_(3)+t_(4)=3/(sqrt(2))impliesx_(1)+x_(2)+x_(3)+x_(4)=3`
`t_(1)t_(2)t_(3)t_(4)=-12sqrt(2)implies1/(t_(1))+1/(t_(2))+1/(t_(3))+1/(t_(4))=2sqrt(2)`
`impliesy_(1)+y_(2)+y_(3)+y_(4)=4`
`y_(1)y_(2)y_(3)y_(4)=4/(t_(1)t_(2)t_(3)t_(4))=-4`
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If the normals at four points P(x_(i)y_(i)),i=1,2,3,4 on the rectangular hyperbola xy=c^(2), meet at the point Q(h,k) prove that

If the normal at four points P_(i)(x_(i), (y_(i)) l, I = 1, 2, 3, 4 on the rectangular hyperbola xy = c^(2) meet at the point Q(h, k), prove that x_(1) + x_(2) + x_(3) + x_(4) = h, y_(1) + y_(2) + y_(3) + y_(4) = k x_(1)x_(2)x_(3)x_(4) =y_(1)y_(2)y_(3)y_(4) =-c^(4)

If the normal at the point P(x_(i),y_(i)),i=1,2,3,4 on the hyperbola xy=c^(2) are concurrent at the point Q(h,k) then _((x_(1)+x_(2)+x_(3)+x_(4))(y_(1)+y_(2)+y_(3)+y_(4)))((x_(1)+x_(2)+x_(3)+x_(4))(y_(1)+y_(2)+y_(3)+y_(4)))/(x_(1)x_(2)x_(3)x_(4)) is

if the normals at (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)),(x_(4),y_(4)) on the rectangular hyperbola xy=c^(2) meet at the point (alpha,beta). Then The value of (x_(1),+x_(2)+x_(3)+x_(4)) is

If the normal to the rectangular hyperbola xy = 4 at the point (2t, (2)/(t_(1))) meets the curve again at (2t_(2), (2)/(t_(2))) , then

RESONANCE-TEST PAPERS-MATHEMATICS
  1. is The function f(x)=(x^2-1)|x^2-3x+2|+cos(|x|) is differentiable not ...

    Text Solution

    |

  2. Consider parabola P(1)-=y=x^(2) and P(2)-=y^(2)=-8x and the line L-=lx...

    Text Solution

    |

  3. If the normals at (x(i),y(i)) i=1,2,3,4 to the rectangular hyperbola x...

    Text Solution

    |

  4. Let f(x)=x^(3)-x^(2)+x+1 and g(x)={("max "f(t) 0letlex 0lexle1),(3-x 1...

    Text Solution

    |

  5. The value(s) of x satisfying tan^(-1)(x+3)-tan^(-1)(x-3)=sin^(-1)(3/5)...

    Text Solution

    |

  6. For an ellipse having major and minor axis along x and y axes respecti...

    Text Solution

    |

  7. If f:[0,1]rarrR is defined as f(x)={(x^(3)(1-x)"sin"1/(x^(2)) 0ltxle1)...

    Text Solution

    |

  8. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  9. For the curve y=4x^3-2x^5,find all the points at which the tangent pa...

    Text Solution

    |

  10. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  11. If y+a=m(1)(x+3a),y+a=m(2)(x+3a) are two tangents to the parabola y^(2...

    Text Solution

    |

  12. If f(x)=lim(m->oo) lim(n->oo)cos^(2m) n!pix then the range of f(x) is

    Text Solution

    |

  13. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  14. Q. For every integer n, let an and bn be real numbers. Let function f:...

    Text Solution

    |

  15. Let a and b are real numbers such that the function f(x)={(-3ax^(2)-2,...

    Text Solution

    |

  16. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |

  17. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |

  18. In a A B C ,A-=(alpha,beta),B-=(1,2),C-=(2,3), point A lies on the li...

    Text Solution

    |

  19. In a Delta ABC, A -= (alpha, beta), B -= (1, 2), C -= (2,3) and point ...

    Text Solution

    |

  20. Let f(x) be real valued continuous function on R defined as f(x)=x^(2)...

    Text Solution

    |