Home
Class 12
MATHS
Minimum value of (sin^(-1)x)^(2)+(cos^(-...

Minimum value of `(sin^(-1)x)^(2)+(cos^(-1)x)^(2)` is greater than

A

`(pi^(2))/4`

B

`(pi^(2))/16`

C

`(3pi^(2))/4`

D

`(3pi^(2))/32`

Text Solution

AI Generated Solution

The correct Answer is:
To find the minimum value of the expression \((\sin^{-1} x)^2 + (\cos^{-1} x)^2\), we can follow these steps: ### Step 1: Use the identity for inverse sine and cosine We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Let \(y = \sin^{-1} x\). Then, we can express \(\cos^{-1} x\) in terms of \(y\): \[ \cos^{-1} x = \frac{\pi}{2} - y \] ### Step 2: Substitute into the expression Now we can substitute \(\cos^{-1} x\) into the original expression: \[ (\sin^{-1} x)^2 + (\cos^{-1} x)^2 = y^2 + \left(\frac{\pi}{2} - y\right)^2 \] ### Step 3: Expand the expression Expanding the expression gives: \[ y^2 + \left(\frac{\pi}{2} - y\right)^2 = y^2 + \left(\frac{\pi^2}{4} - \pi y + y^2\right) \] Combining like terms: \[ = 2y^2 - \pi y + \frac{\pi^2}{4} \] ### Step 4: Find the derivative To find the minimum value, we take the derivative of the function: \[ f(y) = 2y^2 - \pi y + \frac{\pi^2}{4} \] The first derivative is: \[ f'(y) = 4y - \pi \] ### Step 5: Set the derivative to zero Setting the first derivative equal to zero to find critical points: \[ 4y - \pi = 0 \implies y = \frac{\pi}{4} \] ### Step 6: Find the second derivative Now we find the second derivative to confirm that this point is a minimum: \[ f''(y) = 4 \] Since \(f''(y) > 0\), the function is concave up, indicating that \(y = \frac{\pi}{4}\) is indeed a minimum. ### Step 7: Calculate the minimum value Now, substituting \(y = \frac{\pi}{4}\) back into the expression to find the minimum value: \[ f\left(\frac{\pi}{4}\right) = 2\left(\frac{\pi}{4}\right)^2 - \pi\left(\frac{\pi}{4}\right) + \frac{\pi^2}{4} \] Calculating this: \[ = 2\left(\frac{\pi^2}{16}\right) - \frac{\pi^2}{4} + \frac{\pi^2}{4} \] \[ = \frac{\pi^2}{8} - \frac{\pi^2}{4} + \frac{\pi^2}{4} = \frac{\pi^2}{8} \] ### Conclusion Thus, the minimum value of \((\sin^{-1} x)^2 + (\cos^{-1} x)^2\) is \(\frac{\pi^2}{8}\).

To find the minimum value of the expression \((\sin^{-1} x)^2 + (\cos^{-1} x)^2\), we can follow these steps: ### Step 1: Use the identity for inverse sine and cosine We know that: \[ \sin^{-1} x + \cos^{-1} x = \frac{\pi}{2} \] Let \(y = \sin^{-1} x\). Then, we can express \(\cos^{-1} x\) in terms of \(y\): ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is (pi^(2))/(k), then value of k is

The value of (cos(sin^(-1)x))^(2)-(sin(cos^(-1)x))^(2) is =

Find the maximum and minimum values of (sin^(-1)x)^(3)+(cos^(-1)x)^(3), where -1<=x<=1

Prove that the minimum value of the function x^(3)+(1)/(x^(3)) is greater than its maximum value.

The minimum value of 2^(sin x)+2^(cos x)

The minimum value of x which satisfies the inequality (sin^(-1)x)^(2)ge(cos^(-1)x)^(2) is

The maximum and minimum values of f(x)=sin^(-1)x+cos^(-1)x+tan^(-1)x respectively is

The minimum value of a^(cos^(2)x)+a^(sin^(2)x)AA(a>0) is

If a^(2)gtb^(2), then the minimum value of f(x)=a^(2) cos^(2)x+b^(2) sin^(2) x is

A minimum value of sin x cos2x is -

RESONANCE-TEST PAPERS-MATHEMATICS
  1. If f(x)=root (3)(8x^(3)+mx^(2))-nx such that lim(xrarroo)f(x)=1 then

    Text Solution

    |

  2. For the curve y=4x^3-2x^5,find all the points at which the tangent pa...

    Text Solution

    |

  3. Minimum value of (sin^(-1)x)^(2)+(cos^(-1)x)^(2) is greater than

    Text Solution

    |

  4. If y+a=m(1)(x+3a),y+a=m(2)(x+3a) are two tangents to the parabola y^(2...

    Text Solution

    |

  5. If f(x)=lim(m->oo) lim(n->oo)cos^(2m) n!pix then the range of f(x) is

    Text Solution

    |

  6. Tangents are drawn to the hyperbola x^2/9-y^2/4=1 parallet to the srai...

    Text Solution

    |

  7. Q. For every integer n, let an and bn be real numbers. Let function f:...

    Text Solution

    |

  8. Let a and b are real numbers such that the function f(x)={(-3ax^(2)-2,...

    Text Solution

    |

  9. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |

  10. If both Lim(xrarrc^(-))f(x) and Lim(xrarrc^(+))f(x) exist finitely and...

    Text Solution

    |

  11. In a A B C ,A-=(alpha,beta),B-=(1,2),C-=(2,3), point A lies on the li...

    Text Solution

    |

  12. In a Delta ABC, A -= (alpha, beta), B -= (1, 2), C -= (2,3) and point ...

    Text Solution

    |

  13. Let f(x) be real valued continuous function on R defined as f(x)=x^(2)...

    Text Solution

    |

  14. Let f(x) be a real valued continuous function on R defined as f(x)=...

    Text Solution

    |

  15. Let all chords of parabola y^(2)=x+1 which subtends right angle at (1,...

    Text Solution

    |

  16. lim(xrarr(pi)/2)(1-sinxsin3xsin5x.sin7x)/(((pi)/2-x)^(2)) is k then k/...

    Text Solution

    |

  17. If derivative of y=|x-1|^(sinx) at x=-(pi)/2 is (1+api)^(b) then value...

    Text Solution

    |

  18. sin^(-1)(sin10) is a+bpi then |a+b| is

    Text Solution

    |

  19. f:[0,2pi]rarr[-1,1] and g:[0,2pi]rarr[-1,1] be respectively given by f...

    Text Solution

    |

  20. If solution of cot(sin^(-1)sqrt(1-x^(2)))=sin(tan^(-1)(xsqrt(6))),x!=0...

    Text Solution

    |