Home
Class 12
MATHS
Lines whose equation are (x-3)/2=(y-2)/3...

Lines whose equation are `(x-3)/2=(y-2)/3=(z-1)/(lamda)` and `(x-2)/3=(y-3)/2=(z-2)/3` lie in same plane, then.
The value of `sin^(-1)sinlamda` is equal to

A

`3`

B

`pi-3`

C

`4`

D

`pi-4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the value of \( \sin^{-1}(\sin \lambda) \) given the equations of two lines in space. Let's break this down step-by-step. ### Step 1: Identify the points and direction vectors of the lines The first line is given by the equation: \[ \frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda} \] From this, we can identify: - A point \( P(3, 2, 1) \) - A direction vector \( \mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + \lambda\mathbf{k} \) The second line is given by: \[ \frac{x-2}{3} = \frac{y-3}{2} = \frac{z-2}{3} \] From this, we can identify: - A point \( Q(2, 3, 2) \) - A direction vector \( \mathbf{b} = 3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \) ### Step 2: Find the vector \( \mathbf{PQ} \) The vector \( \mathbf{PQ} \) from point \( P \) to point \( Q \) is calculated as follows: \[ \mathbf{PQ} = Q - P = (2 - 3)\mathbf{i} + (3 - 2)\mathbf{j} + (2 - 1)\mathbf{k} = -\mathbf{i} + \mathbf{j} + \mathbf{k} \] ### Step 3: Set up the condition for coplanarity For the lines to lie in the same plane, the vectors \( \mathbf{a} \), \( \mathbf{b} \), and \( \mathbf{PQ} \) must be coplanar. This can be checked using the scalar triple product, which must equal zero: \[ \mathbf{a} \cdot (\mathbf{b} \times \mathbf{PQ}) = 0 \] ### Step 4: Calculate the cross product \( \mathbf{b} \times \mathbf{PQ} \) Calculating the cross product: \[ \mathbf{b} = 3\mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \] \[ \mathbf{PQ} = -\mathbf{i} + \mathbf{j} + \mathbf{k} \] Using the determinant to find \( \mathbf{b} \times \mathbf{PQ} \): \[ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & 3 \\ -1 & 1 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i}(2 \cdot 1 - 3 \cdot 1) - \mathbf{j}(3 \cdot 1 - 3 \cdot (-1)) + \mathbf{k}(3 \cdot 1 - 2 \cdot (-1)) \] \[ = \mathbf{i}(2 - 3) - \mathbf{j}(3 + 3) + \mathbf{k}(3 + 2) \] \[ = -\mathbf{i} - 6\mathbf{j} + 5\mathbf{k} \] ### Step 5: Dot product with \( \mathbf{a} \) Now, we compute the dot product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{PQ}) \): \[ \mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + \lambda\mathbf{k} \] \[ \mathbf{b} \times \mathbf{PQ} = -\mathbf{i} - 6\mathbf{j} + 5\mathbf{k} \] Calculating the dot product: \[ = 2(-1) + 3(-6) + \lambda(5) \] \[ = -2 - 18 + 5\lambda = 5\lambda - 20 \] ### Step 6: Set the scalar triple product to zero Setting the scalar triple product to zero gives: \[ 5\lambda - 20 = 0 \] Solving for \( \lambda \): \[ 5\lambda = 20 \implies \lambda = 4 \] ### Step 7: Calculate \( \sin^{-1}(\sin \lambda) \) Now we need to find \( \sin^{-1}(\sin \lambda) \): \[ \sin^{-1}(\sin 4) \] Since \( 4 \) radians is greater than \( \frac{\pi}{2} \) and less than \( \frac{3\pi}{2} \), we can use the property: \[ \sin^{-1}(\sin x) = x - 2\pi n \quad \text{for } n \in \mathbb{Z} \] In our case, we can find the equivalent angle in the range \( [-\frac{\pi}{2}, \frac{\pi}{2}] \): \[ \sin(4) = \sin(\pi - 4) \quad \text{(since } \sin(\pi - x) = \sin x\text{)} \] Thus: \[ \sin^{-1}(\sin 4) = \pi - 4 \] ### Final Answer The value of \( \sin^{-1}(\sin \lambda) \) is: \[ \boxed{\pi - 4} \]

To solve the problem, we need to determine the value of \( \sin^{-1}(\sin \lambda) \) given the equations of two lines in space. Let's break this down step-by-step. ### Step 1: Identify the points and direction vectors of the lines The first line is given by the equation: \[ \frac{x-3}{2} = \frac{y-2}{3} = \frac{z-1}{\lambda} \] ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

Two line whose are (x-3)/(2)=(y-2)/(3)=(z-1)/(lambda) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3) lie in the same plane, then, Q. The value of sin^(-1)sinlambda is equal to

Lines whose equation are (x-3)/2=(y-2)/3=(z-1)/(lamda) and (x-2)/3=(y-3)/2=(z-2)/3 lie in same plane, then. Angle between the plane containing both lines and the plane 4x+y+2z=0 is

Two lines whose equations are (x-3)/(2)=(y-2)/(y-2)=(z-1)/(z) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3) lie in the same then

Lines (x-1)/2 = (y-2)/3 = (z-3)/4 and (x-2)/3 = (y-3)/4 = (z-4)/5 lie on the plane

Two line whose are (x-3)/(2)=(y-2)/(3)=(z-1)/(lambda) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3) lie in the same plane, then, Q. Point of intersection of the lines lies on

Two line whose are (x-3)/(2)=(y-2)/(3)=(z-1)/(lambda) and (x-2)/(3)=(y-3)/(2)=(z-2)/(3) lie in the same plane, then, Q. Angle between the plane containing both the lines and the plane 4x+y+2z=0 is equal to

If x=ay-1=z-2, and x=3y-2=bz-2 lie in same plane then the value of a and b is

If the lines (x-2)/(1)=(y-3)/(1)=(z-4)/(lamda) and (x-1)/(lamda)=(y-4)/(2)=(z-5)/(1) intersect then

RESONANCE-TEST PAPERS-MATHEMATICS
  1. Consider the quadratic equation az^(2)+bz+c=0 where a,b,c are non-zero...

    Text Solution

    |

  2. Consider the quadratic equation az^(2)+bz+c=0 where a,b,c are non-zero...

    Text Solution

    |

  3. Lines whose equation are (x-3)/2=(y-2)/3=(z-1)/(lamda) and (x-2)/3=(y-...

    Text Solution

    |

  4. Lines whose equation are (x-3)/2=(y-2)/3=(z-1)/(lamda) and (x-2)/3=(y-...

    Text Solution

    |

  5. A die is rolled and showing any number is directly proportional to tha...

    Text Solution

    |

  6. A die is rolled and showing any number is directly proportional to tha...

    Text Solution

    |

  7. One side of square ABCD is on the line y=2x-17 and other two vertices ...

    Text Solution

    |

  8. Let |(1+x,x,x^(2)),(x,1+x,x^(2)),(x^(2),x,1+x)|=1/6(x-alpha(1))(x-alph...

    Text Solution

    |

  9. f:RrarrR be twice differentiable function satisfying f^(")(x)-5f^(')...

    Text Solution

    |

  10. Let O be an interior point of DeltaABC such that bar(OA)+2bar(OB) + ...

    Text Solution

    |

  11. The possible number of ordered triplets (m,n,p) where m,n,p epsilon N ...

    Text Solution

    |

  12. Let f(x) be a function defined by f(x)=int(1)^(x)t(t^(2)-3t+2t)dt,1lex...

    Text Solution

    |

  13. Given abclt0 and a+b+cgt0. If (|a|)/a+(|b|)/b+(|c|)/c=x,then find the ...

    Text Solution

    |

  14. If (1+x+x^(2))^(3n+1)=a(0)+a(1)x+a(2)x^(2)+…a(6n+2)x^(6n+2), then find...

    Text Solution

    |

  15. Find number of values of complex numbers omega satisfying the system o...

    Text Solution

    |

  16. If f(x)= maximum (sinx,cosx,1/2) and the area bounded by y=f(x),x- axi...

    Text Solution

    |

  17. if y=ae^(x)+be^(-3x)+c, then the value of ((d^(3)y)/(dx^(3))+2(d^(2)y)...

    Text Solution

    |

  18. If |(a^(2)+lamda^(2),ab+clamda,ca-blamda),(ab-clamda,b^(2)+lamda^(2),b...

    Text Solution

    |

  19. If DeltaABC, if (c+a)/12=(a+b)/14=(b+c)/18, then find vaue of (7r(1)-r...

    Text Solution

    |

  20. What is the value of 6t such that volume contained inside the planes s...

    Text Solution

    |