Home
Class 12
MATHS
The value of |(.^(10)C(4).^(10)C(5).^(11...

The value of `|(.^(10)C_(4).^(10)C_(5).^(11)C_(m)),(.^(11)C_(6).^(11)C_(7).^(12)C_(m+2)),(.^(12)C_(8).^(12)C_(9).^(13)C_(m+4))|` is equal to zero when `m` is

A

`6`

B

`4`

C

`5`

D

`7`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ D = \begin{vmatrix} \binom{10}{4} & \binom{10}{5} & \binom{11}{m} \\ \binom{11}{6} & \binom{11}{7} & \binom{12}{m+2} \\ \binom{12}{8} & \binom{12}{9} & \binom{13}{m+4} \end{vmatrix} \] We want to find the value of \( m \) for which this determinant equals zero. ### Step 1: Apply Column Operations We can use the property of determinants that allows us to add columns. Specifically, we can add the second column to the first column: \[ C_1 \rightarrow C_1 + C_2 \] This gives us: \[ D = \begin{vmatrix} \binom{10}{4} + \binom{10}{5} & \binom{10}{5} & \binom{11}{m} \\ \binom{11}{6} + \binom{11}{7} & \binom{11}{7} & \binom{12}{m+2} \\ \binom{12}{8} + \binom{12}{9} & \binom{12}{9} & \binom{13}{m+4} \end{vmatrix} \] ### Step 2: Simplify Using Combinatorial Identities Using the identity \( \binom{n}{r} + \binom{n}{r+1} = \binom{n+1}{r+1} \): 1. For the first row: \[ \binom{10}{4} + \binom{10}{5} = \binom{11}{5} \] 2. For the second row: \[ \binom{11}{6} + \binom{11}{7} = \binom{12}{7} \] 3. For the third row: \[ \binom{12}{8} + \binom{12}{9} = \binom{13}{9} \] Thus, we can rewrite the determinant as: \[ D = \begin{vmatrix} \binom{11}{5} & \binom{10}{5} & \binom{11}{m} \\ \binom{12}{7} & \binom{11}{7} & \binom{12}{m+2} \\ \binom{13}{9} & \binom{12}{9} & \binom{13}{m+4} \end{vmatrix} \] ### Step 3: Analyze the Determinant The determinant \( D \) will be zero if any two rows or columns are identical. ### Step 4: Set Conditions for Equality To find \( m \), we need to set conditions for the columns to be equal. 1. Set \( m = 5 \): - Then \( \binom{11}{m} = \binom{11}{5} \) - \( \binom{12}{m+2} = \binom{12}{7} \) - \( \binom{13}{m+4} = \binom{13}{9} \) This gives us: \[ D = \begin{vmatrix} \binom{11}{5} & \binom{10}{5} & \binom{11}{5} \\ \binom{12}{7} & \binom{11}{7} & \binom{12}{7} \\ \binom{13}{9} & \binom{12}{9} & \binom{13}{9} \end{vmatrix} \] ### Step 5: Conclusion Since the first and third columns are identical, the determinant \( D \) equals zero. Thus, the value of \( m \) for which the determinant is zero is: \[ \boxed{5} \]

To solve the problem, we need to evaluate the determinant given by: \[ D = \begin{vmatrix} \binom{10}{4} & \binom{10}{5} & \binom{11}{m} \\ \binom{11}{6} & \binom{11}{7} & \binom{12}{m+2} \\ \binom{12}{8} & \binom{12}{9} & \binom{13}{m+4} \end{vmatrix} ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

If |{:(.^(9)C_(4),.^(9)C_(5),.^(10)C_(r)),(.^(10)C_(6 ),.^(10)C_(7),.^(11)C_(r+2)),(.^(11)C_(8),.^(11)C_(9),.^(12)C_(r+4)):}|=0 , then the value of r is equal to

The value of .^(20)C_(10)+.^(20)C_(1)+.^(20)C_(2)+.^(20)C_(3)+.^(20)C_(4)+.^(20)C_(12)+.^(20)C_(13)+.^(20)C_(14)+.^(20)C_(15) is

|(.^10C_4,.^10C_5,.^11C_m),(.^11C_6,.^11C_7, .^12C_(m+2)),(.^12C_8,.^12C_9,.^13C_(m+4))|=0 then find the value of m

The value of .^(13)C_(7)+.^(13)C_(8)+.^(13)C_(9)+.^(13)C_(10)+.^(13)C_(11)+.^(13)C_(12)+.^(13)C_(13) is equal to

int(x-.^(11)C_(1)x^(2)+.^(11)C_(2)x^(3)-.^(11)C_(3)x^(4)+...-.^(11)C_(x^(12)))dx equal to

(.1^(11)C_(0))/(1)+(.^(11)C_(1))/(2)+(.^(11)C_(2))/(3)+....+(.1^(11)C_(10))/(11)

Verify that: (i) .^(15)C_(8)+.^(15)C_(9)-.^(15)C_(7)=0 " " (ii) .^(10)C_(4)+.^(10)C_(3)=.^(11)C_(4)

RESONANCE-TEST PAPERS-MATHEMATICS
  1. Value of lamda so that point (lamda,lamda^(2)) lies between the lines ...

    Text Solution

    |

  2. Let C1 and C2 are circles defined by x^2+y^2 -20x+64=0 and x^2+y^2+...

    Text Solution

    |

  3. The value of |(.^(10)C(4).^(10)C(5).^(11)C(m)),(.^(11)C(6).^(11)C(7).^...

    Text Solution

    |

  4. The number of all subsets of a set containing 2n+1 elements which cont...

    Text Solution

    |

  5. Let f(x) have a point of inflection at x=1 and let f^(")(x)=x. If f^('...

    Text Solution

    |

  6. Sixteen players P(1),P(2),P(3)….., P(16) play in tournament. If they g...

    Text Solution

    |

  7. If y(x) is the solution of the differential equation (dy)/(dx)=-2x(y-1...

    Text Solution

    |

  8. Let f(x)={{:(int(0)^(x)(5+|1-t|)dt","," if "xgt 2),(5x+1","," if "x le...

    Text Solution

    |

  9. If x(1),x(2)……..x(n) be n observation and barx be their arithmeti...

    Text Solution

    |

  10. The negation of the compound proposition p vv ( ~ p vv q) is

    Text Solution

    |

  11. A line L is perpendicular to the line 3x-4y-7=0 and touches the circle...

    Text Solution

    |

  12. The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3))))))...

    Text Solution

    |

  13. If P(B)=3/4, P(AnnBnnbarC)=1/3 and P(barAnnBbarC)=1/3 then P(BnnC)=

    Text Solution

    |

  14. sum(r=1)^(n) 1/(log(2^(r))4) is equal to

    Text Solution

    |

  15. In how many types ways can five different examination papers of maths...

    Text Solution

    |

  16. The area covered by the curve y=max{2-x,2,1+x} with x-axis from x=-1 t...

    Text Solution

    |

  17. If f(x)=x^(3)+3x^(2)+4x+asinx+bcosx, forall x in R is a one-one fuctio...

    Text Solution

    |

  18. Given the relation R={(1,2),(2,3) on the set A={1,2,3}, add a minimum ...

    Text Solution

    |

  19. If 2a x-2y+3z=0,x+a y+2z=0,a n d2+a z=0 have a nontrivial solution,...

    Text Solution

    |

  20. The number of value(s) of x satisfying 1-log9(x+1)^2=1/2log(sqrt(3))((...

    Text Solution

    |