Home
Class 12
MATHS
A line L is perpendicular to the line 3x...

A line `L` is perpendicular to the line `3x-4y-7=0` and touches the circle `x^(2)+y^(2)-2x-4y-4=0`, the `y`-intercept of the line `L` can be:

A

`25/3`

B

`20/3`

C

`17/3`

D

`4/3`

Text Solution

Verified by Experts

The correct Answer is:
A

Line perpendicular to `3x-4y-7=0` is `4x+3y+lamda=0` ………(1)
`CP=3`
`(|4+6+lamda|)/(sqrt(25))=3implies|10+lamda|=15`
Line `L` can be
`4x+3y+5=0` or `4x+3y-25=0`
`y=-4/3x-5/3` or `4x+3y-25=0`
`y=-4/3x-5/3` or `y=-4/3x+25/3`
`:.` possible intercept on `y`-axis are `-5/3x+25/3`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

A line parallel to the line x-3y=2 touches the circle x^(2)+y^(2)-4x+2y-5=0 at the point

The line 4y-3x+lambda=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 then lambda=

Knowledge Check

  • If the line 3x-4y-k=0 , touches the circle x^(2)+y^(2)-4x-8y-5=0 at (a,b) , then k+a+b is equal to

    A
    20
    B
    22
    C
    `-30`
    D
    `-28`
  • Similar Questions

    Explore conceptually related problems

    if the line 3x-4y-k=0 touches the circle x^(2)+y^(2)-4x-8y-5=0 at (a,b), find (k+a+b)/5is

    Line 3x + 4y = 25 touches the circle x^(2) + y^(2) = 25 at the point

    Show that the line 3x-4y=1 touches the circle x^(2)+y^(2)-2x+4y+1=0 . Find the coordinates of the point of contact.

    Find k , if the line y = 2x + k touches the circle x^(2) + y^(2) - 4x - 2y =0

    prove that the line 3x+4y+7=0 touches the circle x^2+y^2-4x-6y-12=0 also find the point of contact

    The points of intersection of the line 4x-3y-10=0 and the circle x^(2)+y^(2)-2x+4y-20=0 are

    If the line 3x-2y+p = 0 is normal to the circle x^(2)+ y^(2) = 2x-4y ,then p will be