Home
Class 12
MATHS
lim(xrarr1)(1-x)tan((pix)/2) is equal to...

`lim_(xrarr1)(1-x)tan((pix)/2)` is equal to

A

`(pi)/2`

B

`2/(pi)`

C

`-(pi)/2`

D

`-2/(pi)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) \), we will follow these steps: ### Step 1: Substitute the limit First, we substitute \( x = 1 \) directly into the expression: \[ \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) = (1 - 1) \tan\left(\frac{\pi \cdot 1}{2}\right) = 0 \cdot \tan\left(\frac{\pi}{2}\right) \] Since \( \tan\left(\frac{\pi}{2}\right) \) is undefined (approaches infinity), we have an indeterminate form \( 0 \cdot \infty \). ### Step 2: Rewrite the expression To resolve the indeterminate form, we can rewrite the expression: \[ \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) = \lim_{x \to 1} \frac{(1 - x)}{\cot\left(\frac{\pi x}{2}\right)} \] This transforms our limit into a \( \frac{0}{0} \) form as \( x \to 1 \). ### Step 3: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule: \[ \lim_{x \to 1} \frac{(1 - x)}{\cot\left(\frac{\pi x}{2}\right)} = \lim_{x \to 1} \frac{-1}{-\csc^2\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2}} = \lim_{x \to 1} \frac{1}{\csc^2\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2}} \] ### Step 4: Evaluate the limit Now we need to evaluate \( \csc^2\left(\frac{\pi x}{2}\right) \) as \( x \to 1 \): \[ \csc\left(\frac{\pi x}{2}\right) = \frac{1}{\sin\left(\frac{\pi x}{2}\right)} \quad \text{and as } x \to 1, \sin\left(\frac{\pi x}{2}\right) \to 1 \] Thus, \( \csc^2\left(\frac{\pi x}{2}\right) \to 1 \). Substituting this back into our limit gives: \[ \lim_{x \to 1} \frac{1}{\csc^2\left(\frac{\pi x}{2}\right) \cdot \frac{\pi}{2}} = \frac{1}{1 \cdot \frac{\pi}{2}} = \frac{2}{\pi} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) = \frac{2}{\pi} \]

To solve the limit \( \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) \), we will follow these steps: ### Step 1: Substitute the limit First, we substitute \( x = 1 \) directly into the expression: \[ \lim_{x \to 1} (1 - x) \tan\left(\frac{\pi x}{2}\right) = (1 - 1) \tan\left(\frac{\pi \cdot 1}{2}\right) = 0 \cdot \tan\left(\frac{\pi}{2}\right) \] Since \( \tan\left(\frac{\pi}{2}\right) \) is undefined (approaches infinity), we have an indeterminate form \( 0 \cdot \infty \). ...
Promotional Banner

Topper's Solved these Questions

Similar Questions

Explore conceptually related problems

The value of lim_(xrarr1) (2-x)^(tan.(pix)/(2)) is equal to

The value of lim_(xrarr1)(xtan{x})/(x-1) is equal to (where {x} denotes the fractional part of x)

(lim)_(x->1)(2-x)^(tan(pix)/2)

lim_(xrarr oo)(1+(1)/(x))^(x//2) is equal to

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

lim_(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

lim_(xrarr0) (x)/(tan^-1x) is equal to

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

The value of lim_(xrarr0)(log(1+2x))/(5x)+lim_(xrarr2)(x^(4)-2^(4))/(x-2) is equal to

RESONANCE-TEST PAPERS-MATHEMATICS
  1. Find lim(xrarr(2n+1)pi^(+)) sin([sinx](pi)/6), where [.] is a greatest...

    Text Solution

    |

  2. Prove that ("lim")(xvec0)(f(x+h)+f(x-h)-2f(x))/(h^2)=f^(x) (without u...

    Text Solution

    |

  3. lim(xrarr1)(1-x)tan((pix)/2) is equal to

    Text Solution

    |

  4. If f(x)=sqrt(1-e^(-x^2)), then at x=0f(x) is

    Text Solution

    |

  5. If [.] and {.} denote greatest and fractional part functions respectiv...

    Text Solution

    |

  6. If f(x)={((1-sin((3x)/2))/(pi-3x) , x != pi/2),(lambda , x=pi/2)) ...

    Text Solution

    |

  7. If f(x) = lim(n->oo) sum(r=0)^n (tan(x/2^(r+1)) + tan^3 (x/2^(r+1)))/(...

    Text Solution

    |

  8. Given lim(n->oo)((3nCn)/(2nCn))^(1/n) =a/b where a and b are relativel...

    Text Solution

    |

  9. lim(nrarroo)(1/(n+1)+1/(n+2)+…….+1/(6n))=kln6, then find the value of ...

    Text Solution

    |

  10. For positive integers k=1,2,3,....n,, let Sk denotes the area of trian...

    Text Solution

    |

  11. Number of solutions of the equation sec^(-1)((2)/((1)/(x)+x))+picospix...

    Text Solution

    |

  12. If lim(xrarr0)((cotx)(e^(x)-1)-cos^(2)x)/(sinx)=K,Kepsilonr then find ...

    Text Solution

    |

  13. the derivative of y=(1-x)(2-x)..........(n-x) at x=1 is equal to

    Text Solution

    |

  14. If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

    Text Solution

    |

  15. The global maximum value of f(x0=(log)(10)(4x^3-12 x^2+11 x-3),x in [2...

    Text Solution

    |

  16. If 3(a+2c)=4(b+3d), then the equation a x^3+b x^2+c x+d=0 will have no...

    Text Solution

    |

  17. If 3f(cosx)+2f(sinx)=5x, then f^(')(cosx) is equal to (where f^(') den...

    Text Solution

    |

  18. If y=(x^x)^x then (dy)/(dx) is

    Text Solution

    |

  19. If f(x)=(4+x)^(n),"n" epsilonN and f^(r)(0) represents the r^(th) deri...

    Text Solution

    |

  20. Let f(x)=x/(1+x^2) and g(x)=(e^(-x))/(1+[x]) (where [.] denote greates...

    Text Solution

    |