Home
Class 11
MATHS
Find the general solution : sin x + sin...

Find the general solution : `sin x + sin 3x + sin 5x = 0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sin x + \sin 3x + \sin 5x = 0 \), we can use the sum-to-product identities and properties of trigonometric functions. Here’s a step-by-step solution: ### Step 1: Combine the Sine Functions We start with the equation: \[ \sin x + \sin 3x + \sin 5x = 0 \] We can group \( \sin x \) and \( \sin 5x \) together: \[ \sin x + \sin 5x + \sin 3x = 0 \] ### Step 2: Use the Sum-to-Product Identity Using the sum-to-product identities, we can combine \( \sin x \) and \( \sin 5x \): \[ \sin x + \sin 5x = 2 \sin\left(\frac{x + 5x}{2}\right) \cos\left(\frac{5x - x}{2}\right) = 2 \sin(3x) \cos(2x) \] Thus, we can rewrite the equation as: \[ 2 \sin(3x) \cos(2x) + \sin(3x) = 0 \] ### Step 3: Factor the Equation Now, we can factor out \( \sin(3x) \): \[ \sin(3x)(2 \cos(2x) + 1) = 0 \] ### Step 4: Set Each Factor to Zero This gives us two equations to solve: 1. \( \sin(3x) = 0 \) 2. \( 2 \cos(2x) + 1 = 0 \) ### Step 5: Solve \( \sin(3x) = 0 \) The sine function is zero at integer multiples of \( \pi \): \[ 3x = n\pi \quad \Rightarrow \quad x = \frac{n\pi}{3}, \quad n \in \mathbb{Z} \] ### Step 6: Solve \( 2 \cos(2x) + 1 = 0 \) Rearranging gives: \[ \cos(2x) = -\frac{1}{2} \] The cosine function is equal to \(-\frac{1}{2}\) at: \[ 2x = \frac{2\pi}{3} + 2k\pi \quad \text{and} \quad 2x = \frac{4\pi}{3} + 2k\pi, \quad k \in \mathbb{Z} \] Dividing by 2 gives: \[ x = \frac{\pi}{3} + k\pi \quad \text{and} \quad x = \frac{2\pi}{3} + k\pi \] ### Step 7: Combine Solutions Now we combine all solutions: 1. From \( \sin(3x) = 0 \): \( x = \frac{n\pi}{3} \) 2. From \( 2 \cos(2x) + 1 = 0 \): - \( x = \frac{\pi}{3} + k\pi \) - \( x = \frac{2\pi}{3} + k\pi \) ### Final General Solution Thus, the general solution for the equation \( \sin x + \sin 3x + \sin 5x = 0 \) is: \[ x = \frac{n\pi}{3}, \quad x = \frac{\pi}{3} + k\pi, \quad x = \frac{2\pi}{3} + k\pi, \quad n, k \in \mathbb{Z} \]

To solve the equation \( \sin x + \sin 3x + \sin 5x = 0 \), we can use the sum-to-product identities and properties of trigonometric functions. Here’s a step-by-step solution: ### Step 1: Combine the Sine Functions We start with the equation: \[ \sin x + \sin 3x + \sin 5x = 0 \] We can group \( \sin x \) and \( \sin 5x \) together: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise EXERCISE 3.3|25 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise SOLVED EXAMPLES|33 Videos
  • STRAIGHT LINES

    NCERT|Exercise EXERCISE 10.5|2 Videos

Similar Questions

Explore conceptually related problems

Find the general solutions of sin x - 1 = 0

Find the general solution of sin x + sin 5x = sin 2 x + sin 4 x .

Find the general solution of : cos x - sin x = 1 .

Find the general solution: sin2x+cos x=0

Find the general solution of 2sin x+tan x=0

Find the general solution of sin5x cos 3x = sin9x cos7x

Find the general solution of Sin x-Cos x = 1 .

Find the general solution of sin x+sin5x=sin2x+sin4x

General solutions of sin3x=0 is