Home
Class 11
CHEMISTRY
NH(4)HS(s)hArrNH(3)(g)+H(2)S(g) The3 eq...

`NH_(4)HS(s)hArrNH_(3)(g)+H_(2)S(g)`
`The3 equilibrium pressure at `25^(@)C` is 0.660 atm . What is `K_(p)` for the reaction ?

A

0.109

B

`0.218`

C

`1.89`

D

`2.18`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant \( K_p \) for the reaction \[ \text{NH}_4\text{HS}(s) \rightleftharpoons \text{NH}_3(g) + \text{H}_2\text{S}(g) \] with an equilibrium pressure of 0.660 atm at 25°C, we will follow these steps: ### Step 1: Identify the Reaction Components The reaction involves solid ammonium hydrosulfide (\( \text{NH}_4\text{HS} \)) dissociating into gaseous ammonia (\( \text{NH}_3 \)) and hydrogen sulfide (\( \text{H}_2\text{S} \)). The solid does not appear in the equilibrium expression. ### Step 2: Write the Expression for \( K_p \) The equilibrium constant \( K_p \) for the reaction is given by the partial pressures of the gaseous products: \[ K_p = \frac{P_{\text{NH}_3} \cdot P_{\text{H}_2\text{S}}}{1} = P_{\text{NH}_3} \cdot P_{\text{H}_2\text{S}} \] ### Step 3: Determine the Partial Pressures At equilibrium, we know the total pressure \( P_t = 0.660 \, \text{atm} \). Since the reaction produces 1 mole of \( \text{NH}_3 \) and 1 mole of \( \text{H}_2\text{S} \) from 1 mole of \( \text{NH}_4\text{HS} \), we can denote the moles of \( \text{NH}_3 \) and \( \text{H}_2\text{S} \) as \( x \). Thus, the total number of moles of gas at equilibrium is: \[ \text{Total moles} = x + x = 2x \] The mole fraction of each gas is: \[ \text{Mole fraction of } \text{NH}_3 = \frac{x}{2x} = \frac{1}{2} \] \[ \text{Mole fraction of } \text{H}_2\text{S} = \frac{x}{2x} = \frac{1}{2} \] Using the total pressure to find the partial pressures: \[ P_{\text{NH}_3} = \text{Mole fraction of } \text{NH}_3 \times P_t = \frac{1}{2} \times 0.660 \, \text{atm} = 0.330 \, \text{atm} \] \[ P_{\text{H}_2\text{S}} = \text{Mole fraction of } \text{H}_2\text{S} \times P_t = \frac{1}{2} \times 0.660 \, \text{atm} = 0.330 \, \text{atm} \] ### Step 4: Calculate \( K_p \) Now we can substitute the partial pressures into the \( K_p \) expression: \[ K_p = P_{\text{NH}_3} \cdot P_{\text{H}_2\text{S}} = 0.330 \, \text{atm} \times 0.330 \, \text{atm} = 0.1089 \, \text{atm}^2 \] ### Step 5: Round to Appropriate Significant Figures Rounding \( 0.1089 \) to three significant figures gives: \[ K_p \approx 0.109 \] ### Final Answer Thus, the value of \( K_p \) for the reaction is: \[ \boxed{0.109} \]
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI|Exercise Level 1 (Q.93 To Q.122)|1 Videos
  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI|Exercise Level 2|1 Videos
  • ATOMIC STUCTURE

    NARENDRA AWASTHI|Exercise Exercise|273 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI|Exercise Level 3 - Match The Column|1 Videos

Similar Questions

Explore conceptually related problems

NH_(4)HS_(s)hArrNH_(3(g))+H_(2)S_(g) The equilibrium pressure at 25_(@) C is 0.660 atm What is K_(p) for reactoin ? NH_(4)NH_(s)hArrNH_(3(g))+H_(2)S_(g)

NH_(4)COONH_(2)(s)hArr2NH_(3)(g)+CO_(2)(g) If equilibrium pressure is 3 atm for the above reaction, then K_(p) for the reaction is

For the reaction NH_(4)HS(g) hArr NH_(3)(g)+H_(2)S(g) in a closed flask, the equilibrium pressure is P atm. The standard free energy of the reaction would be:

For NH_(4)HS(s)hArr NH_(3)(g)+H_(2)S(g) If K_(p)=64atm^(2) , equilibrium pressure of mixture is

NH_(2)COONH_(2)(s) harr 2NH_(3)(g) + CO_(2)(g) If equilibrium pressure is 3 atm for the above reaction, K_(p) will be