`NH_(4)HS(s)hArrNH_(3)(g)+H_(2)S(g)` `The3 equilibrium pressure at `25^(@)C` is 0.660 atm . What is `K_(p)` for the reaction ?
A
0.109
B
`0.218`
C
`1.89`
D
`2.18`
Text Solution
AI Generated Solution
The correct Answer is:
To find the equilibrium constant \( K_p \) for the reaction
\[
\text{NH}_4\text{HS}(s) \rightleftharpoons \text{NH}_3(g) + \text{H}_2\text{S}(g)
\]
with an equilibrium pressure of 0.660 atm at 25°C, we will follow these steps:
### Step 1: Identify the Reaction Components
The reaction involves solid ammonium hydrosulfide (\( \text{NH}_4\text{HS} \)) dissociating into gaseous ammonia (\( \text{NH}_3 \)) and hydrogen sulfide (\( \text{H}_2\text{S} \)). The solid does not appear in the equilibrium expression.
### Step 2: Write the Expression for \( K_p \)
The equilibrium constant \( K_p \) for the reaction is given by the partial pressures of the gaseous products:
\[
K_p = \frac{P_{\text{NH}_3} \cdot P_{\text{H}_2\text{S}}}{1} = P_{\text{NH}_3} \cdot P_{\text{H}_2\text{S}}
\]
### Step 3: Determine the Partial Pressures
At equilibrium, we know the total pressure \( P_t = 0.660 \, \text{atm} \). Since the reaction produces 1 mole of \( \text{NH}_3 \) and 1 mole of \( \text{H}_2\text{S} \) from 1 mole of \( \text{NH}_4\text{HS} \), we can denote the moles of \( \text{NH}_3 \) and \( \text{H}_2\text{S} \) as \( x \).
Thus, the total number of moles of gas at equilibrium is:
\[
\text{Total moles} = x + x = 2x
\]
The mole fraction of each gas is:
\[
\text{Mole fraction of } \text{NH}_3 = \frac{x}{2x} = \frac{1}{2}
\]
\[
\text{Mole fraction of } \text{H}_2\text{S} = \frac{x}{2x} = \frac{1}{2}
\]
Using the total pressure to find the partial pressures:
\[
P_{\text{NH}_3} = \text{Mole fraction of } \text{NH}_3 \times P_t = \frac{1}{2} \times 0.660 \, \text{atm} = 0.330 \, \text{atm}
\]
\[
P_{\text{H}_2\text{S}} = \text{Mole fraction of } \text{H}_2\text{S} \times P_t = \frac{1}{2} \times 0.660 \, \text{atm} = 0.330 \, \text{atm}
\]
### Step 4: Calculate \( K_p \)
Now we can substitute the partial pressures into the \( K_p \) expression:
\[
K_p = P_{\text{NH}_3} \cdot P_{\text{H}_2\text{S}} = 0.330 \, \text{atm} \times 0.330 \, \text{atm} = 0.1089 \, \text{atm}^2
\]
### Step 5: Round to Appropriate Significant Figures
Rounding \( 0.1089 \) to three significant figures gives:
\[
K_p \approx 0.109
\]
### Final Answer
Thus, the value of \( K_p \) for the reaction is:
\[
\boxed{0.109}
\]
Topper's Solved these Questions
CHEMICAL EQUILIBRIUM
NARENDRA AWASTHI|Exercise Level 1 (Q.93 To Q.122)|1 Videos
CHEMICAL EQUILIBRIUM
NARENDRA AWASTHI|Exercise Level 2|1 Videos
ATOMIC STUCTURE
NARENDRA AWASTHI|Exercise Exercise|273 Videos
DILUTE SOLUTION
NARENDRA AWASTHI|Exercise Level 3 - Match The Column|1 Videos
Similar Questions
Explore conceptually related problems
NH_(4)HS_(s)hArrNH_(3(g))+H_(2)S_(g) The equilibrium pressure at 25_(@) C is 0.660 atm What is K_(p) for reactoin ? NH_(4)NH_(s)hArrNH_(3(g))+H_(2)S_(g)
NH_(4)COONH_(2)(s)hArr2NH_(3)(g)+CO_(2)(g) If equilibrium pressure is 3 atm for the above reaction, then K_(p) for the reaction is
For the reaction NH_(4)HS(g) hArr NH_(3)(g)+H_(2)S(g) in a closed flask, the equilibrium pressure is P atm. The standard free energy of the reaction would be:
For NH_(4)HS(s)hArr NH_(3)(g)+H_(2)S(g) If K_(p)=64atm^(2) , equilibrium pressure of mixture is
NH_(2)COONH_(2)(s) harr 2NH_(3)(g) + CO_(2)(g) If equilibrium pressure is 3 atm for the above reaction, K_(p) will be