Home
Class 11
CHEMISTRY
0.020 g of selenium bapour at equilibriu...

`0.020` g of selenium bapour at equilibrium occupying a volume of `2.463` mL at `1` atm and `27^(@)C.` The selenium is in a state of equilibrium according to reaction
`3Se_(2)(g)hArrSe_(6)(g)`
What is the degreeo f association of selenium ?
(At.mass of se `=79`)

A

`0.205`

B

`0.315`

C

`0.14`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the degree of association of selenium in the reaction: \[ 3 \text{Se}_2(g) \rightleftharpoons \text{Se}_6(g) \] ### Step 1: Calculate the number of moles of selenium vapor We start by calculating the number of moles of selenium vapor using the ideal gas law: \[ PV = nRT \] Where: - \( P = 1 \, \text{atm} \) - \( V = 2.463 \, \text{mL} = 2.463 \times 10^{-3} \, \text{L} \) - \( R = 0.0821 \, \text{L atm K}^{-1} \text{mol}^{-1} \) (ideal gas constant) - \( T = 27^\circ C = 300 \, \text{K} \) Rearranging the ideal gas law to find \( n \): \[ n = \frac{PV}{RT} \] Substituting the values: \[ n = \frac{(1 \, \text{atm}) \times (2.463 \times 10^{-3} \, \text{L})}{(0.0821 \, \text{L atm K}^{-1} \text{mol}^{-1}) \times (300 \, \text{K})} \] Calculating \( n \): \[ n = \frac{2.463 \times 10^{-3}}{24.63} \approx 1.000 \times 10^{-4} \, \text{mol} \] ### Step 2: Calculate the initial moles of selenium Given the mass of selenium is \( 0.020 \, \text{g} \) and the molar mass of selenium (\( \text{Se} \)) is \( 79 \, \text{g/mol} \): \[ \text{Moles of } \text{Se} = \frac{\text{mass}}{\text{molar mass}} = \frac{0.020 \, \text{g}}{79 \, \text{g/mol}} \approx 2.53165 \times 10^{-4} \, \text{mol} \] ### Step 3: Set up the equilibrium expression Let \( \alpha \) be the degree of association. Initially, we have: - Moles of \( \text{Se}_2 \) = \( A = 2.53165 \times 10^{-4} \, \text{mol} \) At equilibrium, the moles of \( \text{Se}_2 \) that dissociate are \( \frac{A \alpha}{3} \), and the moles of \( \text{Se}_6 \) formed are \( \frac{A \alpha}{3} \). Thus, the moles of \( \text{Se}_2 \) at equilibrium: \[ \text{Moles of } \text{Se}_2 = A - \frac{A \alpha}{3} = A(1 - \frac{\alpha}{3}) \] And the moles of \( \text{Se}_6 \) at equilibrium: \[ \text{Moles of } \text{Se}_6 = \frac{A \alpha}{3} \] ### Step 4: Calculate the average molar mass of the mixture The average molar mass \( M \) of the mixture can be calculated as: \[ M = \frac{\text{Total mass}}{\text{Total moles}} = \frac{0.020 \, \text{g}}{n} \] Using the total moles calculated earlier: \[ M = \frac{0.020 \, \text{g}}{1.000 \times 10^{-4} \, \text{mol}} \approx 200 \, \text{g/mol} \] ### Step 5: Relate the molar masses to find the degree of association The molar mass of \( \text{Se}_2 \): \[ \text{Molar mass of } \text{Se}_2 = 2 \times 79 = 158 \, \text{g/mol} \] Using the relationship: \[ \frac{M_{\text{reactant}}}{M_{\text{mixture}}} = \frac{1}{1 - \alpha} \] Substituting the values: \[ \frac{158}{200} = \frac{1}{1 - \alpha} \] Cross-multiplying gives: \[ 158(1 - \alpha) = 200 \] Solving for \( \alpha \): \[ 158 - 158\alpha = 200 \\ -158\alpha = 200 - 158 \\ -158\alpha = 42 \\ \alpha = \frac{42}{158} \approx 0.2658 \] ### Final Result The degree of association \( \alpha \) of selenium is approximately \( 0.2658 \) or \( 26.58\% \). ---
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI|Exercise Level 1 (Q.93 To Q.122)|1 Videos
  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI|Exercise Level 2|1 Videos
  • ATOMIC STUCTURE

    NARENDRA AWASTHI|Exercise Exercise|273 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI|Exercise Level 3 - Match The Column|1 Videos

Similar Questions

Explore conceptually related problems

For the reaction, N_2(g) +O_2(g) hArr 2NO(g) Equilibrium constant k_c=2 Degree of association is

For the hypothetical reaction, 2A(s)+B(g) hArr 3C(g) What is the equilibrium expression ?

0.30 g of gas was found to occupy a volume of 82.0 mL at 27^(@)C and 3 atm. Pressure. The molecular mass of the gas is

The value of equilibrium constant of the reaction, H(g) hArr(1)/(2) H_(2)(g) is 0.8 . The equilibrium constant of the reaction H_(2)(g) + I_(2)(g)hArr2HI(g) will be

If the equilibrium constant of the reaction 2HI(g)hArrH_(2)(g)+I_(2)(g) is 0.25 , find the equilibrium constant of the reaction. (1)/(2)H_(2)+(1)/(2)I_(2)hArrHI(g)

For the reaction N_(2)O_(4)(g)hArr2NO_(2)(g) , the degree of dissociation at equilibrium is 0.2 at 1 atm pressure. The equilibrium constant K_(p) will be

Calculate the volume occupied by 96 g CH_(4) at 16 atm and 27^(@)C(R -0.08 litre atm K^(-1) mol^(-1)) .