Home
Class 11
CHEMISTRY
The equilibrium constant for the ionizat...

The equilibrium constant for the ionization of `RNH_(2)` (g) in water as
`RNH_(2)(g)+H_(2)O(l)hArrRNH_(3)^(+)(aq)+OH^(-)(aq)`
is `8xx10^(-6) at 25^(@)C.` find the pH of a solution at equilibrium when pressure of `RNH_(2)`(g) is `0.5` bar :

A

`~~12.3`

B

`~~11.3`

C

`~~11.45`

D

None

Text Solution

AI Generated Solution

The correct Answer is:
To find the pH of a solution at equilibrium when the pressure of `RNH2` (g) is `0.5` bar, we will follow these steps: ### Step 1: Write the equilibrium expression The ionization reaction is given as: \[ RNH_2(g) + H_2O(l) \rightleftharpoons RNH_3^+(aq) + OH^-(aq) \] The equilibrium constant \( K_c \) for this reaction is given by: \[ K_c = \frac{[RNH_3^+][OH^-]}{[RNH_2]} \] ### Step 2: Set up the initial conditions Initially, we have: - Pressure of `RNH2` = 0.5 bar - Concentration of `RNH3^+` = 0 - Concentration of `OH^-` = 0 ### Step 3: Define changes at equilibrium Let \( x \) be the concentration of `RNH3^+` and `OH^-` produced at equilibrium. Therefore, at equilibrium: - Pressure of `RNH2` = 0.5 bar (remains the same) - Concentration of `RNH3^+` = \( x \) - Concentration of `OH^-` = \( x \) ### Step 4: Convert pressure to concentration Using the ideal gas law, we can convert the pressure of `RNH2` to concentration: \[ [RNH_2] = \frac{P}{RT} \] Assuming \( R = 0.0831 \, \text{L bar K}^{-1} \text{mol}^{-1} \) and \( T = 298 \, \text{K} \): \[ [RNH_2] = \frac{0.5}{0.0831 \times 298} \approx 0.0202 \, \text{mol/L} \] ### Step 5: Substitute into the equilibrium expression Now substituting into the equilibrium expression: \[ K_c = \frac{x \cdot x}{0.0202} = \frac{x^2}{0.0202} \] Given \( K_c = 8 \times 10^{-6} \): \[ 8 \times 10^{-6} = \frac{x^2}{0.0202} \] ### Step 6: Solve for \( x \) Rearranging gives: \[ x^2 = 8 \times 10^{-6} \times 0.0202 \] \[ x^2 = 1.616 \times 10^{-7} \] \[ x = \sqrt{1.616 \times 10^{-7}} \approx 1.27 \times 10^{-4} \, \text{mol/L} \] ### Step 7: Calculate pOH Since \( x \) represents the concentration of `OH^-`: \[ [OH^-] = 1.27 \times 10^{-4} \] Now, calculate pOH: \[ pOH = -\log(1.27 \times 10^{-4}) \] Using logarithm properties: \[ pOH \approx 4 - \log(1.27) \approx 4 - 0.10 \approx 3.90 \] ### Step 8: Calculate pH Using the relationship \( pH + pOH = 14 \): \[ pH = 14 - pOH = 14 - 3.90 = 10.10 \] ### Final Answer The pH of the solution at equilibrium is approximately **10.10**. ---
Promotional Banner

Topper's Solved these Questions

  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI|Exercise Level 1 (Q.93 To Q.122)|1 Videos
  • CHEMICAL EQUILIBRIUM

    NARENDRA AWASTHI|Exercise Level 2|1 Videos
  • ATOMIC STUCTURE

    NARENDRA AWASTHI|Exercise Exercise|273 Videos
  • DILUTE SOLUTION

    NARENDRA AWASTHI|Exercise Level 3 - Match The Column|1 Videos

Similar Questions

Explore conceptually related problems

Write the equilibrium constant of the reaction C(s)+H_(2)O(g)hArrCO(g)+H_(2)(g)

The equilibrium constant for the reaction given is 3.6xx10^(-7)OCl^(-)(aq)+H_2O(l)hArrHOCl(aq)+OH^(-)(aq). What is Ka for HOCl ?

For the auto-ionization of water at 25^(@)C, H_(2)O(l)iff H^(+)(aq)+OH^(-) (aq) equilibrium constant is 10^(-14) . What is DeltaG^(@) for the process?

The equilibrium constant for the reaction : Co^(3+)(aq) + 6NH_3(aq) hArr [Co(NH_3)_6]^(3+) (aq) is 2.0xx10^(-7) . Calculate the value of DeltaG^@ at 25^@C

What is the equilibrium constant expression for the following reaction ? AI(s) +3H^(+) (aq) hArr AI^(3+) (aq) +3//2 H_(2)(g)

O_(3)(g)+I^(-)(aq)+H_(2)O(l) to

Equilibrium constant for the following reaction is 1xx10^(-9) : C_(5)H_(5)N(aq.)+H_(2)O(l)hArrC_(5)H_(5)NH^(+)(aq.)+OH^(-)(aq.) Determine the moles of pyridinium chloride (C_(5)H_(5)N) to obtain a buffer solution of pH=5 :