Home
Class 12
MATHS
d/(dx) [sin (2x + 3)]=...

`d/(dx) [sin (2x + 3)]`=

A

cos (2x + 3)

B

`2 cos (2x + 3)`

C

`- cos (2x + 3)`

D

`3 cos (2x + 3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \sin(2x + 3) \), we will apply the chain rule of differentiation. Here’s the step-by-step solution: ### Step 1: Identify the function Let \( y = \sin(2x + 3) \). ### Step 2: Differentiate using the chain rule Using the chain rule, the derivative of \( \sin(u) \) where \( u = 2x + 3 \) is given by: \[ \frac{dy}{dx} = \cos(u) \cdot \frac{du}{dx} \] where \( u = 2x + 3 \). ### Step 3: Differentiate the inner function Now, we need to find \( \frac{du}{dx} \): \[ u = 2x + 3 \] Differentiating \( u \) with respect to \( x \): \[ \frac{du}{dx} = 2 \] ### Step 4: Substitute back into the derivative Now substitute \( u \) and \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = \cos(2x + 3) \cdot 2 \] ### Step 5: Simplify the expression Thus, we can write: \[ \frac{dy}{dx} = 2 \cos(2x + 3) \] ### Final Answer The derivative of \( \sin(2x + 3) \) with respect to \( x \) is: \[ \frac{d}{dx} [\sin(2x + 3)] = 2 \cos(2x + 3) \] ---
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)sin x

(d)/(dx)sin^(2)x

Knowledge Check

  • d/(dx)[sin {2 cos^(-1) (sin x)}] =

    A
    `-2 sin 2x`
    B
    `-2 cos 2x`
    C
    2 sin 2x
    D
    2 cos 2x
  • d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

    A
    `2/(1+x^(2))`
    B
    ` - 2/( 1+x^(2))`
    C
    ` (3(1-x^(2)))/(| 1-x^(2)|(1-x^(2))) , x ne 1`
    D
    ` 2/(1-x^(2))`
  • Similar Questions

    Explore conceptually related problems

    d/(dx) (sin x+ cos x)

    (d)/(dx)(sin x log x)

    (d)/(dx)[sin^(2)2x] =?

    (d)/(dx)sin(x^(x))

    (d)/(dx)(ln sin sqrt(x))=

    (d)/(dx)[(sin x)/(1+cos x)]=