Home
Class 12
MATHS
d/(dx) [log(logx)] =...

`d/(dx) [log(logx)]` =

A

`x/(log x)`

B

`(log x)/(x)`

C

`(x log x)^(-1)`

D

`x log x`

Text Solution

Verified by Experts

The correct Answer is:
C
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log(cos h(2x))]=

If x>0, then (d)/(dx){log_(7)(log x)}=

Knowledge Check

  • (d)/(dx)[log(secx-tanx)] is equal to

    A
    `-secx`
    B
    `secx+tanx`
    C
    `secx`
    D
    `secx-tanx`
  • (d)/(dx)[log((x^(n))/(e^(x)))]=

    A
    `(n)/(x)+1`
    B
    `(1)/(x)+n`
    C
    `(n)/(x)-1`
    D
    `(1)/(x)-1`
  • Similar Questions

    Explore conceptually related problems

    (d)/(dx)(log e^(x)*log x)

    (d)/(dx)(log*sin x)

    (d)/(dx)(log tan x)

    Differentiate log[log(logx)] w.r.t. x.

    (d)/(dx)((log x)/(sin x))=

    (d)/(dx)[log((x)/(e^(tan x)))]=