Home
Class 12
MATHS
If y = (u -1)/(u + 1) and u = sqrt(x), t...

If `y = (u -1)/(u + 1) and u = sqrt(x)`, then `(dy)/(dx)` is

A

`1/(sqrt(x)(1 + sqrt(x))^(2))`

B

`1/(sqrt(x)(1-sqrt(x))^(2))`

C

`1/(sqrt(x)(1 + sqrt(x))^(-2))`

D

`sqrt(x)(1 + sqrt(x))^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given \(y = \frac{u - 1}{u + 1}\) and \(u = \sqrt{x}\), we will use the chain rule for differentiation. Here are the steps to solve the problem: ### Step 1: Substitute \(u\) into the equation for \(y\) We start by substituting \(u = \sqrt{x}\) into the equation for \(y\): \[ y = \frac{\sqrt{x} - 1}{\sqrt{x} + 1} \] ### Step 2: Differentiate \(y\) with respect to \(u\) Next, we differentiate \(y\) with respect to \(u\) using the quotient rule. The quotient rule states that if \(y = \frac{f(u)}{g(u)}\), then: \[ \frac{dy}{du} = \frac{f'(u)g(u) - f(u)g'(u)}{(g(u))^2} \] Here, \(f(u) = u - 1\) and \(g(u) = u + 1\). Calculating the derivatives: - \(f'(u) = 1\) - \(g'(u) = 1\) Now applying the quotient rule: \[ \frac{dy}{du} = \frac{(1)(u + 1) - (u - 1)(1)}{(u + 1)^2} \] This simplifies to: \[ \frac{dy}{du} = \frac{(u + 1) - (u - 1)}{(u + 1)^2} = \frac{u + 1 - u + 1}{(u + 1)^2} = \frac{2}{(u + 1)^2} \] ### Step 3: Differentiate \(u\) with respect to \(x\) Now we differentiate \(u = \sqrt{x}\) with respect to \(x\): \[ \frac{du}{dx} = \frac{1}{2\sqrt{x}} \] ### Step 4: Apply the chain rule to find \(\frac{dy}{dx}\) Now we can apply the chain rule: \[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{2}{(u + 1)^2} \cdot \frac{1}{2\sqrt{x}} \] Substituting \(u = \sqrt{x}\): \[ \frac{dy}{dx} = \frac{2}{(\sqrt{x} + 1)^2} \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}(\sqrt{x} + 1)^2} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{1}{\sqrt{x}(\sqrt{x} + 1)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y=x^(2)+1" and "u=sqrt(1+x^(2))," then: "(dy)/(dx)=

If y = sin x^(@) " and " u = cos x " then " (dy)/(dx) is equal to

If u= log (1+x^(2)) and v=x -tan ^(-1) x,then(dy)/(dx) =

If y=sqrt(u) ,u=(3-2v)v and v=x^(2) , then (dy)/(dx)=

If y=(1)/(4)u^(4),u=(2)/(3)x^(3)+5 , then (dy)/(dx)=

If y=e^(sin^(-1)x)" and "u=logx," then"(dy)/(du), is

Given y = f(u) and u = g(x). Find (dy)/(dx) . y = sin u, u = 3x + 1

If y =int _(u(x))^(v(x))f(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) If F(x) = int_(1)^(x)e^(t^(2)//2)(1-t^(2))dt , then d/(dx) F(x) at x = 1 is

If y = int_(u(x))^(v(x))f(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_("(a,b)") (x-a) If y = int_(x)^(x^(2)) t^(2)dt , then equation of tangent at x = 1 is

Given y=f(u) and u=g(x) Find (dy)/(dx) if y=2u^(3),u=8x-1

TARGET PUBLICATION-DIFFERENTIATION -EVALUATION TEST
  1. If y = (u -1)/(u + 1) and u = sqrt(x), then (dy)/(dx) is

    Text Solution

    |

  2. If f(x) = (x - 1)/(4) + ((x - 1)^(2))/(12) + ((x -1)^(5))/(20) + ((x -...

    Text Solution

    |

  3. If f(x)=(cosx+isinx)(cos3x+isin3x)...(cos(2n-1)x+isin(2n-1)x) then f"(...

    Text Solution

    |

  4. If y=f((3x+pi)/(5x+4)) and f'(x)=tan^2 x, then (dy)/(dx) at x=0 is

    Text Solution

    |

  5. If y=|cosx|+|sinx|, then (dy)/(dx)" at "x=(2pi)/(3) is

    Text Solution

    |

  6. If y = (1 + (2)/(x)) (1 + (2)/(x))(1 + (3)/(x))...(1 + (n)/(x)) x ...

    Text Solution

    |

  7. If f(x)=x/(1+|x|) for x in R, then f'(0) =

    Text Solution

    |

  8. If y=f((2x+3)/(3-2x)) and f(x)=sin(logx), then (dy)/(dx)=

    Text Solution

    |

  9. d/(dx)[atan^(-1)x+blog((x-1)/(x+1))]=1/(x^4-1)=>a-2b=

    Text Solution

    |

  10. If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

    Text Solution

    |

  11. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  12. If 2x=y^(1/5)+y^(-1/5) then (x^2-1)(d^2y)/dx^2+xdy/dx=ky , then find t...

    Text Solution

    |

  13. if sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a > 0, (y(0) > 0) then y"(0) equa...

    Text Solution

    |

  14. If f(x), g(x), h(x) are polynomials in x of degree 2 If F(x)=|[f,g,h],...

    Text Solution

    |

  15. If y= cos ax and yn is n^(th) derivative of y, then |{:(y,y1,y2),(y3...

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  18. If the function f defined on R-{0} os a dIfferentiable function and f(...

    Text Solution

    |

  19. If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x), then the value ...

    Text Solution

    |

  20. If y=f(x^3),z=g(x^5),f'(x)=tanx and g'(x)=sec x, then (dy)/(dz)=

    Text Solution

    |

  21. If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),p rov et h a t(dy)/(dx)=(x^2)/(y...

    Text Solution

    |