Home
Class 12
MATHS
If x = a^(2)(sin theta + "cosec" theta) ...

If `x = a^(2)(sin theta + "cosec" theta) y = a^(2) (sin theta - "cosec" theta)`, then `(dy)/(dx)` =

A

`y/x`

B

`(-y)/x`

C

`x/y`

D

`(-x)/y`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) given the equations \(x = a^2(\sin \theta + \csc \theta)\) and \(y = a^2(\sin \theta - \csc \theta)\), we will follow these steps: ### Step 1: Differentiate \(x\) with respect to \(\theta\) We start with the expression for \(x\): \[ x = a^2(\sin \theta + \csc \theta) \] To differentiate \(x\) with respect to \(\theta\), we apply the product rule and the chain rule. The derivative of \(\sin \theta\) is \(\cos \theta\) and the derivative of \(\csc \theta\) is \(-\csc \theta \cot \theta\): \[ \frac{dx}{d\theta} = a^2\left(\cos \theta - \csc \theta \cot \theta\right) \] ### Step 2: Differentiate \(y\) with respect to \(\theta\) Next, we differentiate \(y\): \[ y = a^2(\sin \theta - \csc \theta) \] Using the same differentiation rules: \[ \frac{dy}{d\theta} = a^2\left(\cos \theta + \csc \theta \cot \theta\right) \] ### Step 3: Find \(\frac{dy}{dx}\) Now, we can find \(\frac{dy}{dx}\) using the chain rule: \[ \frac{dy}{dx} = \frac{dy/d\theta}{dx/d\theta} \] Substituting the derivatives we found: \[ \frac{dy}{dx} = \frac{a^2\left(\cos \theta + \csc \theta \cot \theta\right)}{a^2\left(\cos \theta - \csc \theta \cot \theta\right)} \] The \(a^2\) terms cancel out: \[ \frac{dy}{dx} = \frac{\cos \theta + \csc \theta \cot \theta}{\cos \theta - \csc \theta \cot \theta} \] ### Step 4: Simplify the expression We can rewrite \(\csc \theta\) as \(\frac{1}{\sin \theta}\) and \(\cot \theta\) as \(\frac{\cos \theta}{\sin \theta}\): \[ \frac{dy}{dx} = \frac{\cos \theta + \frac{1}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta}}{\cos \theta - \frac{1}{\sin \theta} \cdot \frac{\cos \theta}{\sin \theta}} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\cos \theta + \frac{\cos \theta}{\sin^2 \theta}}{\cos \theta - \frac{\cos \theta}{\sin^2 \theta}} \] ### Step 5: Factor out \(\cos \theta\) Factoring \(\cos \theta\) from both the numerator and denominator: \[ \frac{dy}{dx} = \frac{\cos \theta\left(1 + \frac{1}{\sin^2 \theta}\right)}{\cos \theta\left(1 - \frac{1}{\sin^2 \theta}\right)} \] Canceling \(\cos \theta\): \[ \frac{dy}{dx} = \frac{1 + \frac{1}{\sin^2 \theta}}{1 - \frac{1}{\sin^2 \theta}} \] ### Final Result Thus, the final result for \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{\sin^2 \theta + 1}{\sin^2 \theta - 1} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If x =a cot theta , y=b cosec theta ,then (dy)/(dx)=

The sin theta + "cosec" theta =2 , then: sin^(2)theta + "cosec"^(2)theta =

If sin theta-cosec theta=sqrt5 then sin^2 theta+cosec^2 theta=

If sin theta + cosec theta =2, then sin^n theta+"cosec"^n theta is equal to

(sin theta)/(cot theta+cosec theta)=2+(sin theta)/(cot theta-cosec theta)

If sin theta + cosec theta = 2 then the value of sin^5 theta + cosec^5 theta is

(cos^(2)theta)/(sin theta)-cosec theta+sin theta=0

TARGET PUBLICATION-DIFFERENTIATION -EVALUATION TEST
  1. If x = a^(2)(sin theta + "cosec" theta) y = a^(2) (sin theta - "cosec"...

    Text Solution

    |

  2. If f(x) = (x - 1)/(4) + ((x - 1)^(2))/(12) + ((x -1)^(5))/(20) + ((x -...

    Text Solution

    |

  3. If f(x)=(cosx+isinx)(cos3x+isin3x)...(cos(2n-1)x+isin(2n-1)x) then f"(...

    Text Solution

    |

  4. If y=f((3x+pi)/(5x+4)) and f'(x)=tan^2 x, then (dy)/(dx) at x=0 is

    Text Solution

    |

  5. If y=|cosx|+|sinx|, then (dy)/(dx)" at "x=(2pi)/(3) is

    Text Solution

    |

  6. If y = (1 + (2)/(x)) (1 + (2)/(x))(1 + (3)/(x))...(1 + (n)/(x)) x ...

    Text Solution

    |

  7. If f(x)=x/(1+|x|) for x in R, then f'(0) =

    Text Solution

    |

  8. If y=f((2x+3)/(3-2x)) and f(x)=sin(logx), then (dy)/(dx)=

    Text Solution

    |

  9. d/(dx)[atan^(-1)x+blog((x-1)/(x+1))]=1/(x^4-1)=>a-2b=

    Text Solution

    |

  10. If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

    Text Solution

    |

  11. If d/(dx)((1+x^4+x^8)/(1+x^2+x^4))=ax^3+bx,then

    Text Solution

    |

  12. If 2x=y^(1/5)+y^(-1/5) then (x^2-1)(d^2y)/dx^2+xdy/dx=ky , then find t...

    Text Solution

    |

  13. if sqrt(x^2+y^2)=ae^(tan^-1 (y/x)) , a > 0, (y(0) > 0) then y"(0) equa...

    Text Solution

    |

  14. If f(x), g(x), h(x) are polynomials in x of degree 2 If F(x)=|[f,g,h],...

    Text Solution

    |

  15. If y= cos ax and yn is n^(th) derivative of y, then |{:(y,y1,y2),(y3...

    Text Solution

    |

  16. If y = sin[cos^(-1){sin(cos^(-1) x)}], "then" (dy)/(dx)" at x" = (1)/...

    Text Solution

    |

  17. If 8f(x)+6f(1/x)=x+5 and y=x^2(f(x), then (dy)/(dx) at x=-1 is equal t...

    Text Solution

    |

  18. If the function f defined on R-{0} os a dIfferentiable function and f(...

    Text Solution

    |

  19. If the function f(x)=x^(3)+e^(x//2)andg(x)=f^(-1)(x), then the value ...

    Text Solution

    |

  20. If y=f(x^3),z=g(x^5),f'(x)=tanx and g'(x)=sec x, then (dy)/(dz)=

    Text Solution

    |

  21. If sqrt(1-x^6)+sqrt(1-y^6)=a(x^3-y^3),p rov et h a t(dy)/(dx)=(x^2)/(y...

    Text Solution

    |