Home
Class 12
MATHS
If y=e^(x^(2)/(1+x^(2))), then (dy)/(dx)...

If `y=e^(x^(2)/(1+x^(2)))`, then `(dy)/(dx)=`

A

`(2xe^(x^(2)/(1+x^(2))))`

B

`(-2xe^(x^(2)/(1+x^(2)))/(1+x^(2))^(2))`

C

`(xe^(x^(2)/(1+x^(2)))/(1+x^(2))^(2))`

D

`(-xe^(x^(2)/(1+x^(2)))/(1+x^(2))^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = e^{\frac{x^2}{1+x^2}} \), we will use the chain rule and the quotient rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions We have: \[ y = e^{f(x)} \] where \[ f(x) = \frac{x^2}{1+x^2} \] ### Step 2: Differentiate using the chain rule Using the chain rule, we have: \[ \frac{dy}{dx} = e^{f(x)} \cdot \frac{df}{dx} \] ### Step 3: Differentiate \( f(x) \) using the quotient rule To find \( \frac{df}{dx} \), we apply the quotient rule: If \( u = x^2 \) and \( v = 1 + x^2 \), then: \[ \frac{df}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2} \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - \( \frac{du}{dx} = 2x \) - \( \frac{dv}{dx} = 2x \) Now substituting into the quotient rule: \[ \frac{df}{dx} = \frac{(1+x^2)(2x) - (x^2)(2x)}{(1+x^2)^2} \] ### Step 4: Simplify the expression Now simplify the numerator: \[ (1+x^2)(2x) - (x^2)(2x) = 2x + 2x^3 - 2x^3 = 2x \] Thus, we have: \[ \frac{df}{dx} = \frac{2x}{(1+x^2)^2} \] ### Step 5: Substitute back into the derivative of \( y \) Now substituting back into the derivative of \( y \): \[ \frac{dy}{dx} = e^{\frac{x^2}{1+x^2}} \cdot \frac{2x}{(1+x^2)^2} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = e^{\frac{x^2}{1+x^2}} \cdot \frac{2x}{(1+x^2)^2} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y=(e^(2x)-1)/(e^(2x)+1)," then "(dy)/(dx)=

If y=e^(x)x^(2) then (dy)/(dx)=

If e^(2x) +e^(2y) =e^(2( x+y)),then (dy)/(dx)=

If y=x^(x^(2)), then (dy)/(dx) at x=e is

If x^(2y)=e^(x-y)," then "(dy)/(dx)=

If y=x^(e-x^(2)) then (dy)/(dx) is

If y =e^(xsin 2x +cos 2x ), then (dy)/(dx) =

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If let y=cos^(-1)((1-e^(2x))/(1+e^(2x)))" then "(dy)/(dx)=

If y=e^(sin^(2)x) then (dy)/(dx)=