Home
Class 12
MATHS
If y=sqrt(u) ,u=(3-2v)v and v=x^(2), the...

If `y=sqrt(u)` ,u=(3-2v)v and `v=x^(2)`, then `(dy)/(dx)=`

A

`(4-3x^(2))/sqrt(3-2x^(2))`

B

`(3+4x^(2))/sqrt(3-2x^(2))`

C

`(3-4x^(2))/sqrt(3-2x^(2))`

D

`(4+3x^(2))/sqrt(3-2x^(2))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y = (u -1)/(u + 1) and u = sqrt(x) , then (dy)/(dx) is

If u= log (1+x^(2)) and v=x -tan ^(-1) x,then(dy)/(dx) =

If x=sqrt (1+u^(2)),y =log (1+u^(2) ) ,then (dy)/(dx) =

If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2tan^(-1)x , then (d u)/(d v) is equal to......

If : (dx)/(dy)=u" and "(d^(2)x)/(dy^(2))=v," then: "(d^(2)y)/(dx^(2))=

If y = int_(u(x))^(v(x))f(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) if int_(x^(3))^(x^(4))lnt dt , then lim_(xrarr0^(+)) (dy)/(dx) is

If y =int _(u(x))^(v(x))f(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_((a,b)) (x-a) If F(x) = int_(1)^(x)e^(t^(2)//2)(1-t^(2))dt , then d/(dx) F(x) at x = 1 is

If y = int_(u(x))^(v(x))f(t) dt , let us define (dy)/(dx) in a different manner as (dy)/(dx) = v'(x) f^(2)(v(x)) - u'(x) f^(2)(u(x)) alnd the equation of the tangent at (a,b) as y -b = (dy/dx)_("(a,b)") (x-a) If y = int_(x)^(x^(2)) t^(2)dt , then equation of tangent at x = 1 is

If sqrt((v)/(u))+sqrt((u)/(v))=6, then (dv)/(du)=

If u=e^(ax)sinbx and v=e^(ax)cosbx . then what is u(du)/(dx)+v(dv)/(dx) equal to ?