Home
Class 12
MATHS
If y=(tan x + cot x)/(tan x - cot x), th...

If `y=(tan x + cot x)/(tan x - cot x)`, then `(dy)/(dx)=`

A

2 tan 2x sec 2x

B

tan 2x sec 2x

C

`-tan 2x sec 2x`

D

`-2 tan 2x sec 2x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( y = \frac{\tan x + \cot x}{\tan x - \cot x} \) and find \( \frac{dy}{dx} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the given expression: \[ y = \frac{\tan x + \cot x}{\tan x - \cot x} \] ### Step 2: Multiply numerator and denominator by \(\tan x\) To simplify, we multiply the numerator and denominator by \(\tan x\): \[ y = \frac{\tan^2 x + 1}{\tan^2 x - 1} \] Here, we used the identity \(\cot x = \frac{1}{\tan x}\). ### Step 3: Use the identity for \(\tan^2 x\) Recall that \(\tan^2 x + 1 = \sec^2 x\) and \(\tan^2 x - 1 = \sec^2 x - 2\): \[ y = \frac{\sec^2 x}{\sec^2 x - 2} \] ### Step 4: Rewrite the expression We can rewrite \(y\) as: \[ y = \frac{1}{\frac{\sec^2 x - 2}{\sec^2 x}} = \frac{1}{1 - \frac{2}{\sec^2 x}} = \frac{1}{1 - 2 \cos^2 x} \] ### Step 5: Differentiate using the quotient rule To find \(\frac{dy}{dx}\), we will differentiate \(y\) using the quotient rule: \[ \frac{dy}{dx} = \frac{0 \cdot (1 - 2 \cos^2 x) - 1 \cdot (-4 \cos x \sin x)}{(1 - 2 \cos^2 x)^2} \] This simplifies to: \[ \frac{dy}{dx} = \frac{4 \cos x \sin x}{(1 - 2 \cos^2 x)^2} \] ### Step 6: Simplify further Recognizing that \(2 \cos x \sin x = \sin 2x\), we can write: \[ \frac{dy}{dx} = \frac{2 \sin 2x}{(1 - 2 \cos^2 x)^2} \] ### Final Result Thus, the derivative is: \[ \frac{dy}{dx} = \frac{2 \sin 2x}{(1 - 2 \cos^2 x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

tan x+cot x=2

If y = (tan x)^(cot x) " then " (dy)/(dx)= ?

If y=(cosec x-cot x)/(cosec x+cot x) then (dy)/(dx) is

"If "y=(tan x)^((tan x)^(tan x))," then find "(dy)/(dx).

If y = e^(cot x )tan (xe^(x) ) ,then ( dy)/(dx)=

If y=tan^(-1)(cot x)+cot^(-1)(tan x), then (dy)/(dx) is equal to (i)1( ii) 0( iii -1 (iv) -2

cot x-2 cot 2x = tan x

If y =cot ^(-1) ((3+4tan x )/( 4-3tan x) ) ,then (dy)/(dx)=

int (tan x +cot x)^(2)dx