Home
Class 12
MATHS
d/(dx)[log ((cos(e^(x))))]=...

`d/(dx)[log ((cos(e^(x))))]=`

A

`cos(e^(x-1))`

B

`e^-xcos(e^(x))`

C

`e^xsin(e^(x))`

D

`-e^xtan(e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{d}{dx} \left[ \log(\cos(e^x)) \right] \), we will use the chain rule and properties of logarithms. Here is a step-by-step solution: ### Step 1: Apply the Chain Rule We start by applying the chain rule to differentiate the logarithmic function. The derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \), where \( u = \cos(e^x) \). \[ \frac{d}{dx} \left[ \log(\cos(e^x)) \right] = \frac{1}{\cos(e^x)} \cdot \frac{d}{dx}[\cos(e^x)] \] **Hint:** Remember that the derivative of \( \log(u) \) involves the derivative of \( u \). ### Step 2: Differentiate \( \cos(e^x) \) Next, we need to differentiate \( \cos(e^x) \). Using the chain rule again, we have: \[ \frac{d}{dx}[\cos(e^x)] = -\sin(e^x) \cdot \frac{d}{dx}[e^x] \] The derivative of \( e^x \) is \( e^x \), so we can substitute that in: \[ \frac{d}{dx}[\cos(e^x)] = -\sin(e^x) \cdot e^x \] **Hint:** When differentiating \( \cos(u) \), remember that it becomes \( -\sin(u) \), and apply the chain rule for \( u = e^x \). ### Step 3: Substitute Back Now we substitute this back into our expression from Step 1: \[ \frac{d}{dx} \left[ \log(\cos(e^x)) \right] = \frac{1}{\cos(e^x)} \cdot \left(-\sin(e^x) \cdot e^x\right) \] This simplifies to: \[ \frac{d}{dx} \left[ \log(\cos(e^x)) \right] = -\frac{\sin(e^x) \cdot e^x}{\cos(e^x)} \] ### Step 4: Simplify the Expression We can simplify the expression further using the identity \( \tan(u) = \frac{\sin(u)}{\cos(u)} \): \[ -\frac{\sin(e^x)}{\cos(e^x)} \cdot e^x = -e^x \tan(e^x) \] ### Final Answer Thus, the derivative is: \[ \frac{d}{dx} \left[ \log(\cos(e^x)) \right] = -e^x \tan(e^x) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log((x)/(e^(cotx)))]=

(d)/(dx)[log((x)/(e^(tan x)))]=

(d)/(dx)[log((x^(n))/(e^(x)))]=

(d)/(dx)[log(cos h(2x))]=

(d)/(dx)[log((e^(4x))/(1+e^(4x)))]

(d)/(dx)(log e^(x)*log x)

d/(dx)e^(log sqrt(x)}=

(d)/(dx)[log(sec x+tan x)]=

d/(dx) [log(logx)] =

(d)/(dx)((log x)/(sin x))=