Home
Class 12
MATHS
If y=log[tan(pi/4 +x/2)]),then (dy)/(dx)...

If `y=log[tan(pi/4 +x/2)])`,then `(dy)/(dx)` is

A

`-tan x`

B

`-sec x`

C

tan x

D

sec x

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log(\tan(\frac{\pi}{4} + \frac{x}{2})) \), we will use the chain rule and the properties of logarithms and trigonometric functions. ### Step-by-step Solution: 1. **Identify the function**: \[ y = \log(\tan(\frac{\pi}{4} + \frac{x}{2})) \] 2. **Differentiate using the chain rule**: The derivative of \( \log(u) \) is \( \frac{1}{u} \cdot \frac{du}{dx} \). Here, \( u = \tan(\frac{\pi}{4} + \frac{x}{2}) \). \[ \frac{dy}{dx} = \frac{1}{\tan(\frac{\pi}{4} + \frac{x}{2})} \cdot \frac{d}{dx}(\tan(\frac{\pi}{4} + \frac{x}{2})) \] 3. **Differentiate \( u = \tan(\frac{\pi}{4} + \frac{x}{2}) \)**: The derivative of \( \tan(v) \) is \( \sec^2(v) \cdot \frac{dv}{dx} \). Here, \( v = \frac{\pi}{4} + \frac{x}{2} \). \[ \frac{d}{dx}(\tan(v)) = \sec^2(v) \cdot \frac{d}{dx}(\frac{\pi}{4} + \frac{x}{2}) = \sec^2(\frac{\pi}{4} + \frac{x}{2}) \cdot \frac{1}{2} \] 4. **Substituting back**: Now substituting back into the derivative: \[ \frac{dy}{dx} = \frac{1}{\tan(\frac{\pi}{4} + \frac{x}{2})} \cdot \left(\sec^2(\frac{\pi}{4} + \frac{x}{2}) \cdot \frac{1}{2}\right) \] 5. **Using the identity**: Recall that \( \sec^2(v) = 1 + \tan^2(v) \). Therefore: \[ \frac{dy}{dx} = \frac{1}{\tan(\frac{\pi}{4} + \frac{x}{2})} \cdot \left(\left(1 + \tan^2(\frac{\pi}{4} + \frac{x}{2})\right) \cdot \frac{1}{2}\right) \] 6. **Simplifying**: \[ \frac{dy}{dx} = \frac{1}{\tan(\frac{\pi}{4} + \frac{x}{2})} \cdot \frac{1}{2} \cdot \left(1 + \tan^2(\frac{\pi}{4} + \frac{x}{2})\right) \] \[ = \frac{1}{2} \cdot \frac{1 + \tan^2(\frac{\pi}{4} + \frac{x}{2})}{\tan(\frac{\pi}{4} + \frac{x}{2})} \] 7. **Final Result**: Thus, the derivative \( \frac{dy}{dx} \) can be expressed as: \[ \frac{dy}{dx} = \frac{1}{2} \cdot \frac{1}{\sin(\frac{\pi}{4} + \frac{x}{2}) \cdot \cos(\frac{\pi}{4} + \frac{x}{2})} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y=Cot^(-1)[tan((pi)/(2)-x)] then (dy)/(dx) =

If y= log (secx+tan x ) ,then (dy)/(dx)

If y=e^(tan x(ln sin x)) then (dy)/(dx) is equal to

If y=tan^(-1)(cot((pi)/(2)-x)) then (dy)/(dx) is equal to

If y=log (log ( log x)) ,then (dy)/(dx)

If y=log(sec x+tan x), then (dy)/(dx)=

If y=e^((1/2)log(1+tan^2 x)) then (dy)/(dx)=

If y=log tan((pi)/(4)+(x)/(2)), show that (dy)/(dx)=sec x. Also find the value of (d^(2)y)/(dx^(2)) at x=(pi)/(4)

If y="log"_(2)"log"_(2)(x) , then (dy)/(dx) is equal to