Home
Class 12
MATHS
If y=log sqrt((1-cos x)/(1+ cos x)), the...

If `y=log sqrt((1-cos x)/(1+ cos x))`, then `(dy)/(dx)` is

A

`-sin x`

B

`- "cosec"x`

C

sin x

D

cosec x

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \log \sqrt{\frac{1 - \cos x}{1 + \cos x}} \), we will follow these steps: ### Step 1: Simplify the expression We can rewrite the logarithm of the square root as: \[ y = \frac{1}{2} \log \left( \frac{1 - \cos x}{1 + \cos x} \right) \] ### Step 2: Use the properties of logarithms Using the properties of logarithms, we can separate the fraction: \[ y = \frac{1}{2} \left( \log(1 - \cos x) - \log(1 + \cos x) \right) \] ### Step 3: Differentiate using the chain rule Now, we will differentiate \( y \) with respect to \( x \): \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{d}{dx} \log(1 - \cos x) - \frac{d}{dx} \log(1 + \cos x) \right) \] Using the derivative of the logarithm \( \frac{d}{dx} \log(u) = \frac{1}{u} \cdot \frac{du}{dx} \): - For \( \log(1 - \cos x) \): \[ \frac{d}{dx} \log(1 - \cos x) = \frac{1}{1 - \cos x} \cdot \sin x \] - For \( \log(1 + \cos x) \): \[ \frac{d}{dx} \log(1 + \cos x) = \frac{1}{1 + \cos x} \cdot (-\sin x) \] ### Step 4: Substitute back into the derivative Now substituting these derivatives back into our expression: \[ \frac{dy}{dx} = \frac{1}{2} \left( \frac{\sin x}{1 - \cos x} + \frac{\sin x}{1 + \cos x} \right) \] ### Step 5: Combine the fractions Combining the two fractions: \[ \frac{dy}{dx} = \frac{1}{2} \sin x \left( \frac{1}{1 - \cos x} + \frac{1}{1 + \cos x} \right) \] Finding a common denominator: \[ \frac{dy}{dx} = \frac{1}{2} \sin x \left( \frac{(1 + \cos x) + (1 - \cos x)}{(1 - \cos x)(1 + \cos x)} \right) \] This simplifies to: \[ \frac{dy}{dx} = \frac{1}{2} \sin x \left( \frac{2}{1 - \cos^2 x} \right) \] ### Step 6: Use the identity \( 1 - \cos^2 x = \sin^2 x \) Thus, we have: \[ \frac{dy}{dx} = \frac{1}{2} \sin x \left( \frac{2}{\sin^2 x} \right) = \frac{1}{\sin x} \] ### Final Result Therefore, the derivative is: \[ \frac{dy}{dx} = \csc x \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

Ify=sqrt((1-cos x)/(1+cos x))then(dy)/(dx)=

If y=sqrt((1-cos 2x)/(1+cos 2x)) , then find (dy)/(dx) .

If y = log ((cos x)/(1 - sin x)), "then " (dy)/(dx) is equal to

If y=log((1-cos x)/(1+cos x)) thenn dy/dx=

If y= sqrt(cos x) + sqrt (cos sqrt (x)),then (dy)/(dx)

If y = sqrt((1 + cos 2x)/(1-cos 2x))" find " (dy)/(dx)

y=log tan((x)/(2))+sin^(-1)(cos x), then (dy)/(dx) is

If y=tan^(-1)sqrt((1-cos x)/(1+cos x)), prove that (dy)/(dx)=(1)/(2)

If y=cos^(-1) (cos x),"then " (dy)/(dx) is