Home
Class 12
MATHS
If y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(...

If `y=x/2 sqrt(a^(2)+x^(2)) +a^(2)/2 log(x+sqrt(x^(2)+a^(2)))`, then `(dy)/(dx)=`

A

`sqrt(x^(2) +a^(2))`

B

`1/sqrt(x^(2) +a^(2))`

C

`2sqrt(x^(2) +a^(2))`

D

`2/sqrt(x^(2) +a^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \( \frac{dy}{dx} \) for the given function \[ y = \frac{x}{2 \sqrt{a^2 + x^2}} + \frac{a^2}{2} \log\left(x + \sqrt{x^2 + a^2}\right), \] we will differentiate each term separately. ### Step 1: Differentiate the first term The first term is \[ y_1 = \frac{x}{2 \sqrt{a^2 + x^2}}. \] Using the quotient rule, where \( u = x \) and \( v = 2\sqrt{a^2 + x^2} \): \[ \frac{dy_1}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}. \] Calculating \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - \( \frac{du}{dx} = 1 \) - \( v = 2\sqrt{a^2 + x^2} \) - \( \frac{dv}{dx} = 2 \cdot \frac{1}{2\sqrt{a^2 + x^2}} \cdot 2x = \frac{2x}{\sqrt{a^2 + x^2}} \) Now substituting back into the quotient rule: \[ \frac{dy_1}{dx} = \frac{2\sqrt{a^2 + x^2} \cdot 1 - x \cdot \frac{2x}{\sqrt{a^2 + x^2}}}{(2\sqrt{a^2 + x^2})^2}. \] This simplifies to: \[ \frac{dy_1}{dx} = \frac{2\sqrt{a^2 + x^2} - \frac{2x^2}{\sqrt{a^2 + x^2}}}{4(a^2 + x^2)} = \frac{2(a^2 + x^2) - 2x^2}{4\sqrt{a^2 + x^2}(a^2 + x^2)} = \frac{2a^2}{4\sqrt{a^2 + x^2}(a^2 + x^2)} = \frac{a^2}{2\sqrt{a^2 + x^2}(a^2 + x^2)}. \] ### Step 2: Differentiate the second term The second term is \[ y_2 = \frac{a^2}{2} \log\left(x + \sqrt{x^2 + a^2}\right). \] Using the chain rule: \[ \frac{dy_2}{dx} = \frac{a^2}{2} \cdot \frac{1}{x + \sqrt{x^2 + a^2}} \cdot \left(1 + \frac{x}{\sqrt{x^2 + a^2}}\right). \] The derivative of \( \sqrt{x^2 + a^2} \) is \( \frac{x}{\sqrt{x^2 + a^2}} \). Thus, \[ \frac{dy_2}{dx} = \frac{a^2}{2} \cdot \frac{1 + \frac{x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}. \] Combining the two derivatives: \[ \frac{dy}{dx} = \frac{a^2}{2\sqrt{a^2 + x^2}(a^2 + x^2)} + \frac{a^2}{2} \cdot \frac{1 + \frac{x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}. \] ### Final Answer Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{a^2}{2\sqrt{a^2 + x^2}(a^2 + x^2)} + \frac{a^2}{2} \cdot \frac{1 + \frac{x}{\sqrt{x^2 + a^2}}}{x + \sqrt{x^2 + a^2}}. \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y=log(x+sqrt(x^(2)+a^(2)) then find (dy)/(dx)

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=

Ify=log(x+sqrt(x^(2)+4)), then (dy)/(dx)=

y=x sqrt(a^(2)+x^(2))+a^(2)log(x+sqrt(a^(2)+x^(2))), thenshowthat (dy)/(dx)=2sqrt(a^(2)+x^(2))

y=ln(x+sqrt(x^(2)+a^(2))). Find (dy)/(dx)

If y = log (x + sqrt(x^(2) + a^(2))) " then " (dy)/(dx) = ?

If y=(x)/(2)sqrt(x^(2)-a^(2))-(a^(2))/(2)log(x+sqrt(x^(2)-a^(2))) show that (dy)/(dx)=sqrt(x^(2)-a^(2))

If y=log(sqrt(x+sqrt(x^(2)+a^(2))))" then: "(dy)/(dx)=

If y =sqrt(a^(2) + sqrt( a^(2)+ x^(2)) ),then (dy)/(dx) =