Home
Class 12
MATHS
If f(x)=cos (sin x^(2)), then f'(x) at x...

If f(x)`=cos (sin x^(2))`, then `f'(x)` at `x=sqrt(pi/2)` is

A

`-1`

B

1

C

0

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(x) \) where \( f(x) = \cos(\sin(x^2)) \) and evaluate it at \( x = \sqrt{\frac{\pi}{2}} \), we will follow these steps: ### Step 1: Differentiate \( f(x) \) Using the chain rule, we differentiate \( f(x) = \cos(\sin(x^2)) \). \[ f'(x) = -\sin(\sin(x^2)) \cdot \frac{d}{dx}(\sin(x^2)) \] ### Step 2: Differentiate \( \sin(x^2) \) Next, we need to differentiate \( \sin(x^2) \) using the chain rule again. \[ \frac{d}{dx}(\sin(x^2)) = \cos(x^2) \cdot \frac{d}{dx}(x^2) = \cos(x^2) \cdot 2x \] ### Step 3: Substitute back into \( f'(x) \) Now we substitute this back into our expression for \( f'(x) \): \[ f'(x) = -\sin(\sin(x^2)) \cdot \cos(x^2) \cdot 2x \] ### Step 4: Evaluate \( f'(\sqrt{\frac{\pi}{2}}) \) Now we need to evaluate \( f' \) at \( x = \sqrt{\frac{\pi}{2}} \): 1. Calculate \( x^2 \): \[ x^2 = \left(\sqrt{\frac{\pi}{2}}\right)^2 = \frac{\pi}{2} \] 2. Calculate \( \sin(x^2) \): \[ \sin\left(\frac{\pi}{2}\right) = 1 \] 3. Calculate \( \cos(x^2) \): \[ \cos\left(\frac{\pi}{2}\right) = 0 \] 4. Substitute these values into \( f'(\sqrt{\frac{\pi}{2}}) \): \[ f'\left(\sqrt{\frac{\pi}{2}}\right) = -\sin(1) \cdot 0 \cdot 2\left(\sqrt{\frac{\pi}{2}}\right) \] Since one of the factors is 0, we have: \[ f'\left(\sqrt{\frac{\pi}{2}}\right) = 0 \] ### Final Answer Thus, \( f'(\sqrt{\frac{\pi}{2}}) = 0 \). ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=|cos x-sin x|, then f'((pi)/(4))=

If f(x)=|cos x-sin x|* then f((pi)/(4)) is

If f(x)=|cos x-sin x|, then f'((pi)/(2)) is equal to

If f(x)=cos x+sin x, find f((pi)/(2))

If f(x)=sin(2x^(2)-2[x]) for 0

If f(x)=cos x+sin x . find f ((pi)/(2)) .

If y(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

If f'(x)=k(cos x-sin x),f'(0)=3 and f((pi)/(2)) find f'(x)

If f(x)=sqrt(1-sin2x), then f'(x) is equal to -(cos x+sin x), for x in((pi)/(4),(pi)/(2))cos x+sin x, for x in(0,(pi)/(4))-(cos x+sin x), for x in(0,(pi)/(4))cos x-sin x, for x in((pi)/(4),(pi)/(2))

If f(x)=sqrt((x-sin x)/(x+cos^(2)x)), then lim(x rarr oo)f(x) is , then