Home
Class 12
MATHS
If f(1)=3 , f'(1)=2 , then d/(dx) {logf(...

If `f(1)=3` , `f'(1)=2` , then `d/(dx)` `{logf(e^x+2x)}` at `x=0` is equal to........

A

`2/3`

B

`3/2`

C

2

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF INVERSE FUNCTIONS|27 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise CRITICAL THINKING|17 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

f(x)=(2x-pi)^(3)+2x-cos x,Th e n,(d)/(dx)[f^(-1)(x)] at x=pi is equal to :

If adifferentiabl e function f(x)=e^(x)+2x is given,then equal to (d)/(dx)(f^(-1)(x)) at x=f(ln3) is equal to

If f(x)=tan^(-1)((3x-x^(3))/(1-3x^(2))) then (d)/(dx)(f(x)) is equal to

If (d)/(dx)[f(x)]=(1)/(1+x^(2))," then: "(d)/(dx)[f(x^(3))]=

If f(x)=log_(e)((1-x)/(1+x)),|x| lt 1, " then " f((2x)/(1+x^(2))) is equal to