Home
Class 12
MATHS
d/(dx)[sin {2 cos^(-1) (sin x)}]=...

`d/(dx)[sin {2 cos^(-1) (sin x)}]`=

A

`-2 sin 2x`

B

`-2 cos 2x`

C

2 sin 2x

D

2 cos 2x

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{d}{dx} \left[ \sin \left( 2 \cos^{-1} (\sin x) \right) \right] \), we will follow these steps: ### Step 1: Set up the function Let \[ y = \sin \left( 2 \cos^{-1} (\sin x) \right) \] ### Step 2: Use the identity for cosine inverse We know that \[ \cos^{-1} (\sin x) = \frac{\pi}{2} - x \quad \text{(for } x \text{ in the range of } [0, \frac{\pi}{2})\text{)} \] Thus, we can rewrite \(y\) as: \[ y = \sin \left( 2 \left( \frac{\pi}{2} - x \right) \right) \] ### Step 3: Simplify the expression Now simplify: \[ y = \sin \left( \pi - 2x \right) \] Using the property of sine, we have: \[ \sin(\pi - \theta) = \sin(\theta) \] So, \[ y = \sin(2x) \] ### Step 4: Differentiate with respect to \(x\) Now we differentiate \(y\): \[ \frac{dy}{dx} = \frac{d}{dx} \left[ \sin(2x) \right] \] Using the chain rule: \[ \frac{dy}{dx} = 2 \cos(2x) \] ### Final Result Thus, the derivative is: \[ \frac{d}{dx} \left[ \sin \left( 2 \cos^{-1} (\sin x) \right) \right] = 2 \cos(2x) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)(sin{2cos^(-1)(sinx)}]=

(d)/(dx)sin x

(d)/(dx)cos^(-1)(sin x)=

d/(dx) (sin x+ cos x)

(d) / (dx) [sin ^ (- 1) ((sin a cos x) / (1-sin a cos x))] =

d/(dx) [sin (2x + 3)] =

(d)/(dx)sin^(2)x

(d)/(dx)[sin^(-1){cos(x^(2)-2)}]=

(d)/(dx)[3(sin^(2)x+cos^(2)x)]=

(d)/(dx)[cos^(2)x(3-4cos^(2)x)^(2)]+(d)/(dx)[sin^(2)(3-4sin^(2)x)^(2)]=