Home
Class 12
MATHS
If y=tan^(-1)((6+5 tanx)/(5- 6 tanx)), t...

If `y=tan^(-1)((6+5 tanx)/(5- 6 tanx))`, then `(dy)/(dx)=`

A

1

B

`1/2`

C

`-1/2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \tan^{-1}\left(\frac{6 + 5 \tan x}{5 - 6 \tan x}\right) \), we will use the chain rule and the derivative of the inverse tangent function. Let's solve it step by step. ### Step 1: Differentiate the function We start with the function: \[ y = \tan^{-1}\left(\frac{6 + 5 \tan x}{5 - 6 \tan x}\right) \] Using the chain rule, the derivative of \( y \) with respect to \( x \) is: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{6 + 5 \tan x}{5 - 6 \tan x}\right)^2} \cdot \frac{d}{dx}\left(\frac{6 + 5 \tan x}{5 - 6 \tan x}\right) \] ### Step 2: Differentiate the inner function Let \( u = \frac{6 + 5 \tan x}{5 - 6 \tan x} \). We need to find \( \frac{du}{dx} \). Using the quotient rule: \[ \frac{du}{dx} = \frac{(5 - 6 \tan x)(5 \sec^2 x) - (6 + 5 \tan x)(-6 \sec^2 x)}{(5 - 6 \tan x)^2} \] ### Step 3: Simplify \( \frac{du}{dx} \) Now we simplify: \[ \frac{du}{dx} = \frac{(5 - 6 \tan x)(5 \sec^2 x) + (6 + 5 \tan x)(6 \sec^2 x)}{(5 - 6 \tan x)^2} \] \[ = \frac{(25 \sec^2 x - 30 \tan x \sec^2 x + 36 \sec^2 x + 30 \tan x \sec^2 x)}{(5 - 6 \tan x)^2} \] \[ = \frac{(61 \sec^2 x)}{(5 - 6 \tan x)^2} \] ### Step 4: Substitute back into the derivative Now we substitute \( \frac{du}{dx} \) back into the derivative: \[ \frac{dy}{dx} = \frac{1}{1 + \left(\frac{6 + 5 \tan x}{5 - 6 \tan x}\right)^2} \cdot \frac{61 \sec^2 x}{(5 - 6 \tan x)^2} \] ### Step 5: Simplify the expression To simplify \( 1 + \left(\frac{6 + 5 \tan x}{5 - 6 \tan x}\right)^2 \): \[ 1 + \left(\frac{6 + 5 \tan x}{5 - 6 \tan x}\right)^2 = \frac{(5 - 6 \tan x)^2 + (6 + 5 \tan x)^2}{(5 - 6 \tan x)^2} \] Calculating the numerator: \[ (5 - 6 \tan x)^2 + (6 + 5 \tan x)^2 = (25 - 60 \tan x + 36 \tan^2 x) + (36 + 60 \tan x + 25 \tan^2 x) \] \[ = 61 + 61 \tan^2 x \] Thus, we have: \[ \frac{dy}{dx} = \frac{61 \sec^2 x}{(5 - 6 \tan x)^2} \cdot \frac{(5 - 6 \tan x)^2}{61 + 61 \tan^2 x} \] \[ = \frac{61 \sec^2 x}{61 + 61 \tan^2 x} \] \[ = \frac{\sec^2 x}{1 + \tan^2 x} \] Since \( 1 + \tan^2 x = \sec^2 x \), we finally get: \[ \frac{dy}{dx} = 1 \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

tan^(-1)(secx+tanx)

y=x^(tanx) then (dy)/(dx) is

If y= tan ^(-1) ((5ax )/( a^(2) - 6x^(2))),then (dy)/(dx) =

If y=(tanx)/(tan3x), then

If y=sqrt((1+tanx)/(1-tanx))," then: "(dy)/(dx)=

inttan^(-1)((2tanx)/(1-tan^(2)x))dx=

If y=secx*tanx then dy/dx=

If y=(tanx+cotx)/(tanx-cotx)," then: "(dy)/(dx)=