A
B
C
D
Text Solution
Verified by Experts
The correct Answer is:
Topper's Solved these Questions
DIFFERENTIATION
TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 VideosDIFFERENTIATION
TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 VideosDIFFERENTIATION
TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 VideosDIFFERENTIAL EQUATIONS
TARGET PUBLICATION|Exercise EVALUATION TEST|25 VideosINTEGRATION
TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos
Similar Questions
Explore conceptually related problems
TARGET PUBLICATION-DIFFERENTIATION -DERIVATIVE OF INVERSE FUNCTIONS
- Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)
Text Solution
|
- Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)
Text Solution
|
- d/(dx)(tan^(-1) ((cos x)/(1+sinx))=
Text Solution
|
- If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to
Text Solution
|
- Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(...
Text Solution
|
- If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt1-sinx)," then "...
Text Solution
|
- If y= sin ^(-1) ((4cos x +5sin x )/( sqrt(41))) ,then (dy)/(dx)=
Text Solution
|
- If y=tan^(-1) ((1+x)/(1-x)) then (dy)/(dx)=
Text Solution
|
- d/(dx)(tan^(- 1)(2/(x^(- 1)-x))) is equal to
Text Solution
|
- d/dx(tan^-1(x/sqrt(a^2-x^2))
Text Solution
|
- d/dx(tan^-1(x/sqrt(a^2-x^2))
Text Solution
|
- If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)),-<x<1, Prove tha...
Text Solution
|
- (d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=
Text Solution
|
- tan^(-1)((e^(2x)+1)/(e^(2x)-1))
Text Solution
|
- d/(dx)[sin^(- 1)((sqrt(1+x)+sqrt(1-x))/2)]=
Text Solution
|
- The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt...
Text Solution
|
- (d)/(dx)[sin^(2)cot^(-1)( sqrt((1-x)/(1+x)))] is equal to -
Text Solution
|
- If f(x)=cot^(-1)sqrt(cos2x)," then: "f'((pi)/(6))=
Text Solution
|
- If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2, then f'(p...
Text Solution
|
- If f(x)=cos^(-1)[(1-(logx)^2)/(1+(logx)^2)] , then the value of f'(e) ...
Text Solution
|