Home
Class 12
MATHS
If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx...

If `f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2`, then `f'(pi/6)` is

A

`-1/4`

B

`-1/2`

C

`1/4`

D

`1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(\frac{\pi}{6}) \) for the function \( f(x) = \tan^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right) \), we will follow these steps: ### Step 1: Simplify the function We start with the function: \[ f(x) = \tan^{-1}\left(\sqrt{\frac{1+\sin x}{1-\sin x}}\right) \] Using the identity: \[ \frac{1+\sin x}{1-\sin x} = \frac{\cos^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right)} = \cot^2\left(\frac{x}{2}\right) \] Thus, we can rewrite: \[ f(x) = \tan^{-1}\left(\sqrt{\cot^2\left(\frac{x}{2}\right)}\right) = \tan^{-1}\left(\cot\left(\frac{x}{2}\right)\right) \] Since \( \tan^{-1}(\cot(\theta)) = \frac{\pi}{2} - \theta \), we have: \[ f(x) = \frac{\pi}{2} - \frac{x}{2} \] ### Step 2: Differentiate the function Now, we differentiate \( f(x) \): \[ f'(x) = \frac{d}{dx}\left(\frac{\pi}{2} - \frac{x}{2}\right) = 0 - \frac{1}{2} = -\frac{1}{2} \] ### Step 3: Evaluate the derivative at \( x = \frac{\pi}{6} \) Now, we find \( f'(\frac{\pi}{6}) \): \[ f'(\frac{\pi}{6}) = -\frac{1}{2} \] ### Final Answer Thus, the value of \( f'(\frac{\pi}{6}) \) is: \[ \boxed{-\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF PARAMETRIC FUNCTIONS|18 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise DERIVATIVE OF COMPOSITE FUNCTIONS|22 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Simplify tan^(-1).(cosx/(1-sinx))(-pi)/2 lt x lt pi/2

tan^(-1) ((cosx - sinx)/(cosx + sinx)) , 0< x < pi

sqrt((1+sinx)/(1-sinx))=tan(pi/4+x/2)

If y=cot^(-1)[(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx))] , where 0lt xlt(pi)/(2), then (dy)/(dx) is equal to

If f(x)= int_(0^(sinx) cos^(-1)t dt +int_(0)^(cosx) sin^(-1)t dt, 0 lt x lt (pi)/(2) then f(pi//4) is equal to

If y = tan^(-1) sqrt((1-sinx)/(1+sinx)) , then the value of (dy)/(dx) "at x = (pi)/(6) is

TARGET PUBLICATION-DIFFERENTIATION -DERIVATIVE OF INVERSE FUNCTIONS
  1. Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

    Text Solution

    |

  2. Find (dy)/(dx) if y=tan^(-1)(4x)/(1+5x^2)+tan^(-1)(2+3x)/(3-2x)

    Text Solution

    |

  3. d/(dx)(tan^(-1) ((cos x)/(1+sinx))=

    Text Solution

    |

  4. If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

    Text Solution

    |

  5. Differentiate w.r.t. x: (i)tan^(-1){sqrt((1+cosx)/(1-cosx))}" "(...

    Text Solution

    |

  6. If coty=(sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt1-sinx)," then "...

    Text Solution

    |

  7. If y= sin ^(-1) ((4cos x +5sin x )/( sqrt(41))) ,then (dy)/(dx)=

    Text Solution

    |

  8. If y=tan^(-1) ((1+x)/(1-x)) then (dy)/(dx)=

    Text Solution

    |

  9. d/(dx)(tan^(- 1)(2/(x^(- 1)-x))) is equal to

    Text Solution

    |

  10. d/dx(tan^-1(x/sqrt(a^2-x^2))

    Text Solution

    |

  11. d/dx(tan^-1(x/sqrt(a^2-x^2))

    Text Solution

    |

  12. If y=sin^(-1)((2x)/(1+x^2))+sec^(-1)((1+x^2)/(1-x^2)),-<x<1, Prove tha...

    Text Solution

    |

  13. (d)/(dx)[sin^(-1)sqrt(((1-x))/(2)]=

    Text Solution

    |

  14. tan^(-1)((e^(2x)+1)/(e^(2x)-1))

    Text Solution

    |

  15. d/(dx)[sin^(- 1)((sqrt(1+x)+sqrt(1-x))/2)]=

    Text Solution

    |

  16. The differential coefficient of tan^(- 1)((sqrt(1+x)-sqrt(1-x))/(sqrt...

    Text Solution

    |

  17. (d)/(dx)[sin^(2)cot^(-1)( sqrt((1-x)/(1+x)))] is equal to -

    Text Solution

    |

  18. If f(x)=cot^(-1)sqrt(cos2x)," then: "f'((pi)/(6))=

    Text Solution

    |

  19. If f(x) = tan^(-1)(sqrt((1+sinx)/(1-sinx))), 0 lt x lt pi/2, then f'(p...

    Text Solution

    |

  20. If f(x)=cos^(-1)[(1-(logx)^2)/(1+(logx)^2)] , then the value of f'(e) ...

    Text Solution

    |