Home
Class 12
MATHS
If y=xe^(xy), then (dy)/(dx)=...

If `y=xe^(xy)`, then `(dy)/(dx)`=

A

`((1+xy)y)/((1-xy)x)`

B

`(1+xy)/(1-xy)`

C

`((1-xy)y)/((1+xy)x)`

D

`(1-xy)/(1+xy)`

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the equation \(y = x e^{xy}\), we will use implicit differentiation. Here are the steps to solve the problem: ### Step 1: Differentiate both sides with respect to \(x\) Starting with the equation: \[ y = x e^{xy} \] We will differentiate both sides with respect to \(x\). Remember that \(y\) is a function of \(x\), so we will use the product rule and chain rule. ### Step 2: Apply the product rule Differentiating the right-hand side using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}(x) \cdot e^{xy} + x \cdot \frac{d}{dx}(e^{xy}) \] The derivative of \(x\) is \(1\), so we have: \[ \frac{dy}{dx} = e^{xy} + x \cdot \frac{d}{dx}(e^{xy}) \] ### Step 3: Differentiate \(e^{xy}\) using the chain rule Using the chain rule for \(e^{xy}\): \[ \frac{d}{dx}(e^{xy}) = e^{xy} \cdot \frac{d}{dx}(xy) \] Now, we need to differentiate \(xy\) using the product rule: \[ \frac{d}{dx}(xy) = x \frac{dy}{dx} + y \] So, \[ \frac{d}{dx}(e^{xy}) = e^{xy} (x \frac{dy}{dx} + y) \] ### Step 4: Substitute back into the equation Now substituting back into our equation: \[ \frac{dy}{dx} = e^{xy} + x \cdot e^{xy} (x \frac{dy}{dx} + y) \] This simplifies to: \[ \frac{dy}{dx} = e^{xy} + x e^{xy} (x \frac{dy}{dx} + y) \] ### Step 5: Rearranging the equation Now we can rearrange the equation to isolate \(\frac{dy}{dx}\): \[ \frac{dy}{dx} - x^2 e^{xy} \frac{dy}{dx} = e^{xy} + x y e^{xy} \] Factoring out \(\frac{dy}{dx}\): \[ \frac{dy}{dx} (1 - x^2 e^{xy}) = e^{xy} + x y e^{xy} \] ### Step 6: Solve for \(\frac{dy}{dx}\) Finally, we can solve for \(\frac{dy}{dx}\): \[ \frac{dy}{dx} = \frac{e^{xy} + x y e^{xy}}{1 - x^2 e^{xy}} \] ### Final Answer Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \frac{e^{xy}(1 + xy)}{1 - x^2 e^{xy}} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y= e^(xy), then (dy)/(dx) =

If y=e^(1+xy)," then "(dy)/(dx)=

If y=1 +xe^(y) ,then (dy)/(dx) =

If y=xe^(xy)" and "(dy)/(dx)=(y(1+u))/(x(1-u))," then "u=

If xy=e^(x-y), find (dy)/(dx)

If x=y ln(xy), then (dy)/(dx) equals

If xy=e^((x-y)), then find (dy)/(dx)

If ye ^(x) +xe^(y) =1 ,then (dy)/(dx) =

xy(dy)/(dx)=y+2

If y = e^(cot x )tan (xe^(x) ) ,then ( dy)/(dx)=