Home
Class 12
MATHS
Derivative of e^(x) cosx w.r.t. e^(-x)si...

Derivative of `e^(x) cosx` w.r.t. `e^(-x)`sin x is

A

cot x

B

`-cot x`

C

`e^(2x)`

D

`-e^(2x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of \( y = e^{x} \cos x \) with respect to \( z = e^{-x} \sin x \), we can use the chain rule. Here’s a step-by-step solution: ### Step 1: Define the functions Let: - \( y = e^{x} \cos x \) - \( z = e^{-x} \sin x \) ### Step 2: Find \( \frac{dy}{dx} \) We need to differentiate \( y \) with respect to \( x \). Using the product rule: \[ \frac{dy}{dx} = \frac{d}{dx}(e^{x}) \cdot \cos x + e^{x} \cdot \frac{d}{dx}(\cos x) \] Calculating the derivatives: - \( \frac{d}{dx}(e^{x}) = e^{x} \) - \( \frac{d}{dx}(\cos x) = -\sin x \) Thus, \[ \frac{dy}{dx} = e^{x} \cos x - e^{x} \sin x \] Factoring out \( e^{x} \): \[ \frac{dy}{dx} = e^{x} (\cos x - \sin x) \] ### Step 3: Find \( \frac{dz}{dx} \) Now, differentiate \( z \) with respect to \( x \). Using the product rule: \[ \frac{dz}{dx} = \frac{d}{dx}(e^{-x}) \cdot \sin x + e^{-x} \cdot \frac{d}{dx}(\sin x) \] Calculating the derivatives: - \( \frac{d}{dx}(e^{-x}) = -e^{-x} \) - \( \frac{d}{dx}(\sin x) = \cos x \) Thus, \[ \frac{dz}{dx} = -e^{-x} \sin x + e^{-x} \cos x \] Factoring out \( e^{-x} \): \[ \frac{dz}{dx} = e^{-x} (\cos x - \sin x) \] ### Step 4: Find \( \frac{dy}{dz} \) Using the chain rule: \[ \frac{dy}{dz} = \frac{dy/dx}{dz/dx} \] Substituting the expressions we found: \[ \frac{dy}{dz} = \frac{e^{x} (\cos x - \sin x)}{e^{-x} (\cos x - \sin x)} \] ### Step 5: Simplify The \( (\cos x - \sin x) \) terms cancel out (assuming \( \cos x - \sin x \neq 0 \)): \[ \frac{dy}{dz} = \frac{e^{x}}{e^{-x}} = e^{x + x} = e^{2x} \] ### Final Answer Thus, the derivative of \( e^{x} \cos x \) with respect to \( e^{-x} \sin x \) is: \[ \frac{dy}{dz} = e^{2x} \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

Derivative e^(x) cos x w.r.t. e^(x) sin x , " at" x=0 is

e^(x)"cos x w.r.t."e^(x)sinx

Find derivative of e^(6x)cos3x w.r.t.to x

Find derivative of e^(x)sin5x w.r.t.to x

Find derivative of e^(-x) w.r.t.to x

Find derivative of e^(cos x) w.r.t.to x

Derivative of x ^(x) w.r.t xlogx is

The derivative of x.e^(x).sin x w.r.t x is

Differentiate x^(3)e^(x)cosx w.r.t x