Home
Class 12
MATHS
If y=log(1+ theta), x= sin^(-1) theta, t...

If `y=log(1+ theta), x= sin^(-1) theta`, then `(dy)/(dx)`=

A

`sqrt(1/(1+theta))`

B

`(1+ theta)/(1- theta)`

C

`sqrt((1-theta)/(1+ theta))`

D

`sqrt((1+ theta)/(1- theta))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(\frac{dy}{dx}\) given that \(y = \log(1 + \theta)\) and \(x = \sin^{-1}(\theta)\). We will use the chain rule for differentiation. ### Step-by-Step Solution: 1. **Identify the functions**: - \(y = \log(1 + \theta)\) - \(x = \sin^{-1}(\theta)\) 2. **Differentiate \(y\) with respect to \(\theta\)**: \[ \frac{dy}{d\theta} = \frac{d}{d\theta} \log(1 + \theta) = \frac{1}{1 + \theta} \cdot \frac{d}{d\theta}(1 + \theta) = \frac{1}{1 + \theta} \] 3. **Differentiate \(x\) with respect to \(\theta\)**: \[ \frac{dx}{d\theta} = \frac{d}{d\theta} \sin^{-1}(\theta) = \frac{1}{\sqrt{1 - \theta^2}} \] 4. **Apply the chain rule**: Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy}{d\theta} \cdot \frac{d\theta}{dx} = \frac{dy}{d\theta} \cdot \frac{1}{\frac{dx}{d\theta}} \] 5. **Substitute the derivatives**: \[ \frac{dy}{dx} = \frac{1}{1 + \theta} \cdot \frac{1}{\frac{1}{\sqrt{1 - \theta^2}}} = \frac{1}{1 + \theta} \cdot \sqrt{1 - \theta^2} \] 6. **Final expression**: \[ \frac{dy}{dx} = \frac{\sqrt{1 - \theta^2}}{1 + \theta} \] ### Final Answer: \[ \frac{dy}{dx} = \frac{\sqrt{1 - \theta^2}}{1 + \theta} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

if x=a cos^(4) theta, y= a sin^(4) theta, "then" (dy)/(dx)"at" theta=(3pi)/(4) is

If y=1- cos theta, x =1 - sin theta,then (dy)/(dx) " at " theta = (pi)/(4) is

if x=cos theta,y=sin theta then (dy)/(dx)=

x=cos theta,y=sin theta then(dy)/(dx)

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x = sin theta, y = tan theta then find (dy)/(dx)