Home
Class 12
MATHS
Differential coefficient of sin^(-1)((1-...

Differential coefficient of `sin^(-1)((1-x)/(1+x))` w.r.t `sqrt(x)` is

A

`1/(2sqrt(x))`

B

`sqrt(x)/sqrt(1-x)`

C

1

D

`-2/(1+x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the differential coefficient of \( \sin^{-1}\left(\frac{1-x}{1+x}\right) \) with respect to \( \sqrt{x} \), we will follow these steps: ### Step 1: Define the function Let \[ y = \sin^{-1}\left(\frac{1-x}{1+x}\right) \] ### Step 2: Differentiate \( y \) with respect to \( x \) Using the chain rule, we differentiate \( y \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{1-x}{1+x}\right)^2}} \cdot \frac{d}{dx}\left(\frac{1-x}{1+x}\right) \] ### Step 3: Differentiate the inner function To differentiate \( \frac{1-x}{1+x} \), we apply the quotient rule: \[ \frac{d}{dx}\left(\frac{1-x}{1+x}\right) = \frac{(1+x)(-1) - (1-x)(1)}{(1+x)^2} = \frac{-1 - x - 1 + x}{(1+x)^2} = \frac{-2}{(1+x)^2} \] ### Step 4: Substitute back into the derivative Now substituting back into the derivative of \( y \): \[ \frac{dy}{dx} = \frac{1}{\sqrt{1 - \left(\frac{1-x}{1+x}\right)^2}} \cdot \left(\frac{-2}{(1+x)^2}\right) \] ### Step 5: Simplify the expression under the square root We need to simplify \( 1 - \left(\frac{1-x}{1+x}\right)^2 \): \[ \left(\frac{1-x}{1+x}\right)^2 = \frac{(1-x)^2}{(1+x)^2} = \frac{1 - 2x + x^2}{1 + 2x + x^2} \] Thus, \[ 1 - \left(\frac{1-x}{1+x}\right)^2 = 1 - \frac{1 - 2x + x^2}{1 + 2x + x^2} = \frac{(1 + 2x + x^2) - (1 - 2x + x^2)}{1 + 2x + x^2} = \frac{4x}{1 + 2x + x^2} \] ### Step 6: Substitute back into the derivative Now substituting this back: \[ \frac{dy}{dx} = \frac{1}{\sqrt{\frac{4x}{1 + 2x + x^2}}} \cdot \left(\frac{-2}{(1+x)^2}\right) = \frac{-2}{(1+x)^2} \cdot \frac{\sqrt{1 + 2x + x^2}}{2\sqrt{x}} = \frac{-\sqrt{1 + 2x + x^2}}{(1+x)^2\sqrt{x}} \] ### Step 7: Change the variable to \( z = \sqrt{x} \) Now, let \( z = \sqrt{x} \), then \( x = z^2 \) and \( \frac{dx}{dz} = 2z \). We need to find \( \frac{dy}{dz} \): \[ \frac{dy}{dz} = \frac{dy}{dx} \cdot \frac{dx}{dz} = \frac{-\sqrt{1 + 2z^2 + z^4}}{(1 + z^2)^2 z} \cdot 2z = \frac{-2\sqrt{1 + 2z^2 + z^4}}{(1 + z^2)^2} \] ### Final Answer Thus, the differential coefficient of \( \sin^{-1}\left(\frac{1-x}{1+x}\right) \) with respect to \( \sqrt{x} \) is: \[ \frac{dy}{dz} = \frac{-2\sqrt{1 + 2z^2 + z^4}}{(1 + z^2)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise COMPETITIVE THINKING|138 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise LOGARITHMIC DIFFERENTIATION|30 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

Defferential Coefficient of sin^(-1)""(1-x)/(1+x)w.r.t.sqrt(x) is

The differential coefficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is

The differential cofficient of sec^(-1)((1)/(2x^(2)-1)) w.r.t sqrt(1-x^(2)) is-

Differential coefficient of sin^(-1)x w.r.t. cos^(-1)sqrt(1-x^2) is equal to......

Differential coefficient of tan^(-1)sqrt((1-x^2)/(1+x^2)) w.r.t. cos^(-1)(x^2) is equal to.....

The differential coefficient of sin^(-1)((x)/(sqrt(1+x^(2)))) w.r. t cos^(-1)((1-x^(2))/(1+x^(2))) is -

The differential coefficient of tan^(-1)((2x)/(1-x^2)) w.r.t. sin^(-1)((2x)/(1+x^2)) is equal to.........

Differential coefficient of sec(tan^(-1)x) w.r.t x is

Differential coefficient of e^sin^((-1)x) w.r.t. e^-cos^((-1)x) is independent of x . ( T or F )