Home
Class 12
MATHS
if f(2)=4,f'(2)=1 then lim(x->2){xf(2)-2...

if `f(2)=4,f'(2)=1` then `lim_(x->2){xf(2)-2f(x)}/(x-2)`

A

1

B

2

C

3

D

-2

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

if f(2)=4,f'(2)=1 then lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2,f'(2)=1. then lim_(x rarr2)(2x^(2)-4f(x))/(x-2)=(i)-4(ii)-2(iii)2(iv)

Let f(2)=4 and f'(2)=4. Then lim_(x rarr2)(xf(2)-2f(x))/(x-2) is equal to

Let f(2)=4,f'(2)=4 .Then Lt_(x rarr2)(xf(2)-2f(x))/(x-2) is :

If f(2)=4 and f'(2)=1, then find (lim)_(x rarr2)(xf(2)-2f(x))/(x-2)

If f(2)=2 and f'(2)=1, then find lim_(x rarr2)(xf(2)-2f(x))/(x-2)

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

lim_(x rarr2)(f(x)-f(2))/(x-2)=