Home
Class 12
MATHS
d/(dx)[cos(1-x^2)^2]=...

`d/(dx)[cos(1-x^2)^2]=`

A

`-2x(1-x^2) sin (1-x^2)^2`

B

`-4x(1-x^2) sin (1-x^2)^2`

C

`4x (1-x^2) sin (1-x^2)^2`

D

`-2(1-x^2) sin (1-x^2)^2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{d}{dx} \left[ \cos(1 - x^2)^2 \right] \), we will use the chain rule and the product rule of differentiation. Here’s a step-by-step solution: ### Step 1: Identify the outer and inner functions Let \( y = \cos(z) \) where \( z = (1 - x^2)^2 \). ### Step 2: Differentiate using the chain rule Using the chain rule, we have: \[ \frac{dy}{dx} = \frac{dy}{dz} \cdot \frac{dz}{dx} \] ### Step 3: Differentiate \( y \) with respect to \( z \) Now, differentiate \( y = \cos(z) \): \[ \frac{dy}{dz} = -\sin(z) \] ### Step 4: Differentiate \( z \) with respect to \( x \) Next, we need to differentiate \( z = (1 - x^2)^2 \): Using the chain rule again: \[ \frac{dz}{dx} = 2(1 - x^2) \cdot \frac{d}{dx}(1 - x^2) \] Now, differentiate \( 1 - x^2 \): \[ \frac{d}{dx}(1 - x^2) = -2x \] So, \[ \frac{dz}{dx} = 2(1 - x^2)(-2x) = -4x(1 - x^2) \] ### Step 5: Combine the results Now we can substitute \( \frac{dy}{dz} \) and \( \frac{dz}{dx} \) back into the chain rule: \[ \frac{dy}{dx} = -\sin(z) \cdot (-4x(1 - x^2)) = 4x(1 - x^2) \sin(z) \] ### Step 6: Substitute back for \( z \) Recall that \( z = (1 - x^2)^2 \): \[ \frac{dy}{dx} = 4x(1 - x^2) \sin((1 - x^2)^2) \] ### Final Answer Thus, the derivative is: \[ \frac{d}{dx} \left[ \cos(1 - x^2)^2 \right] = 4x(1 - x^2) \sin((1 - x^2)^2) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

(d)/(dx)[log(cos h(2x))]=

(d)/(dx)cos^(-1)(sin x)=

d/(dx)(cos^(-1)((1 - x^2)/(1 + x^2))) =.............. If x is positive

(d)/(dx)[sin^(-1){cos(x^(2)-2)}]=

(d)/(dx)[(1+cos2x+sin2x)/(1+sin2x-cos2x)]=

(d)/(dx)[cos^(-1)sqrt((1+x^(2))/(2))=

(d)/(dx)[cos^(-1)sqrt(((1+x))/(2))]

d/(dx)[sin {2 cos^(-1) (sin x)}] =

(d)/(dx)[cos^(2)x(3-4cos^(2)x)^(2)]+(d)/(dx)[sin^(2)(3-4sin^(2)x)^(2)]=