Home
Class 12
MATHS
d/(dx)[e^xlog(1+x^2)]=...

`d/(dx)[e^xlog(1+x^2)]=`

A

`e^x[log(1+x^2)+(2x)/(1+x^2)]`

B

`e^x[log(1+x^2)-(2x)/(1+x^2)]`

C

`e^x[log(1+x^2)+(x)/(1+x^2)]`

D

`e^x[log(1+x^2)-(x)/(1+x^2)]`

Text Solution

AI Generated Solution

The correct Answer is:
To differentiate the function \( y = e^x \log(1 + x^2) \), we will use the product rule of differentiation. The product rule states that if you have two functions \( u \) and \( v \), then the derivative of their product is given by: \[ \frac{d}{dx}(uv) = u \frac{dv}{dx} + v \frac{du}{dx} \] In this case, let: - \( u = e^x \) - \( v = \log(1 + x^2) \) ### Step 1: Differentiate \( u \) and \( v \) First, we need to find the derivatives of \( u \) and \( v \). 1. **Differentiate \( u = e^x \)**: \[ \frac{du}{dx} = e^x \] 2. **Differentiate \( v = \log(1 + x^2) \)**: Using the chain rule, we have: \[ \frac{dv}{dx} = \frac{1}{1 + x^2} \cdot \frac{d}{dx}(1 + x^2) = \frac{1}{1 + x^2} \cdot 2x = \frac{2x}{1 + x^2} \] ### Step 2: Apply the Product Rule Now we apply the product rule: \[ \frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx} \] Substituting \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \): \[ \frac{dy}{dx} = e^x \cdot \frac{2x}{1 + x^2} + \log(1 + x^2) \cdot e^x \] ### Step 3: Factor out \( e^x \) We can factor out \( e^x \) from both terms: \[ \frac{dy}{dx} = e^x \left( \frac{2x}{1 + x^2} + \log(1 + x^2) \right) \] ### Final Result Thus, the derivative of \( y = e^x \log(1 + x^2) \) is: \[ \frac{dy}{dx} = e^x \left( \frac{2x}{1 + x^2} + \log(1 + x^2) \right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

d/(dx)(e^xlogsin2x)=

d/(dx)e^(log sqrt(x)}=

(d)/(dx)(e^(log_(e)x^(3)))

(d)/(dx)(log e^(x)*log x)

d/(dx)log_|x|e=

d/(dx) (e^(x sin x)) =

d/(dx)(e^sqrt(1-x^2).tanx)=

(d)/(dx)[log((x^(n))/(e^(x)))]=

(d)/(dx)(3^x)(e^x)

The differentiation of log _(e)x,x>0is(1)/(x)* i.e.(d)/(dx)(log_(e)x)=(1)/(x)

TARGET PUBLICATION-DIFFERENTIATION -COMPETITIVE THINKING
  1. If y=log((1-x^(2))/(1+x^(2)))," then "(dy)/(dx)=

    Text Solution

    |

  2. d/(dx)[cos(1-x^2)^2]=

    Text Solution

    |

  3. d/(dx)[e^xlog(1+x^2)]=

    Text Solution

    |

  4. d/(dx)(e^xlogsin2x)=

    Text Solution

    |

  5. d/(dx)(e^sqrt(1-x^2).tanx)=

    Text Solution

    |

  6. Find the differentiation of (e^(2x)+e^(-2x))/(e^(2x)-e^(-2x)) w.r.t. \...

    Text Solution

    |

  7. if y=logx*e^((tanx+x^(2))), then (dy)/(dx) is equal to

    Text Solution

    |

  8. Let F(x)=e^x,G(x)=e^(-x) " and " H(x)=G(F(x)), where x is a real varia...

    Text Solution

    |

  9. let f(x)=e^x ,g(x)=sin^(- 1) x and h(x)=f(g(x)) t h e n f i n d (h^(pr...

    Text Solution

    |

  10. If f(x)=(1)/(1-x), then the derivative of the composite function f[f{f...

    Text Solution

    |

  11. If y=f((2x-1)/(x^(2)+1)) and f^'(x)=sinx^(2), then (dy)/(dx) is equal ...

    Text Solution

    |

  12. If g(x) is the inverse function of f(x) and f'(x)=(1)/(1+x^(4)), then ...

    Text Solution

    |

  13. Let f : (-1,1) to R be a differentiabale function with f(0) = -1 and f...

    Text Solution

    |

  14. given y=(5x)/(3*sqrt(1-x)^2)+cos^2(2x+1),find dy/dx

    Text Solution

    |

  15. If y = f(x^(2) + 2) " and " f'(3) = 5 , " then" dy/dx " at x " = 1 is

    Text Solution

    |

  16. If f (x) = log(x) (log x), then f'(x) at x = e is …….. .

    Text Solution

    |

  17. If f(x)=sqrt(1+cos^2(x^2)),thenf'(sqrtpi/2) is

    Text Solution

    |

  18. If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4)...

    Text Solution

    |

  19. d/(dx)tan^-1((1-x)/(1+x))=

    Text Solution

    |

  20. If y =tan ^(-1) ((sqrt( a) -sqrt(x)) /( 1+sqrt( ax)) ) ,then (dy)/(dx)...

    Text Solution

    |