Home
Class 12
MATHS
d/(dx)tan^-1((1-x)/(1+x))=...

`d/(dx)tan^-1((1-x)/(1+x))=`

A

`(-2)/(1+x^2)`

B

`(-1)/(1+x^2)`

C

`(2)/(1+x^2)`

D

`(1)/(1+x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{d}{dx} \tan^{-1}\left(\frac{1-x}{1+x}\right) \), we will follow these steps: ### Step 1: Let \( y = \tan^{-1}\left(\frac{1-x}{1+x}\right) \) We start by defining \( y \) as the inverse tangent of the expression \( \frac{1-x}{1+x} \). ### Step 2: Use the identity for tangent We can use the identity for tangent to simplify the expression. Recall that: \[ \tan\left(\frac{\pi}{4} - \theta\right) = \frac{1 - \tan(\theta)}{1 + \tan(\theta)} \] By letting \( x = \tan(\theta) \), we can rewrite \( y \): \[ y = \tan^{-1}\left(\tan\left(\frac{\pi}{4} - \theta\right)\right) \] Thus, we have: \[ y = \frac{\pi}{4} - \theta \] ### Step 3: Express \( \theta \) in terms of \( x \) Since \( x = \tan(\theta) \), we can express \( \theta \) as: \[ \theta = \tan^{-1}(x) \] Substituting this back into our expression for \( y \): \[ y = \frac{\pi}{4} - \tan^{-1}(x) \] ### Step 4: Differentiate \( y \) with respect to \( x \) Now we differentiate \( y \): \[ \frac{dy}{dx} = 0 - \frac{d}{dx} \tan^{-1}(x) \] Using the derivative of the inverse tangent function, we know: \[ \frac{d}{dx} \tan^{-1}(x) = \frac{1}{1+x^2} \] Thus: \[ \frac{dy}{dx} = -\frac{1}{1+x^2} \] ### Step 5: Final result The derivative of \( \tan^{-1}\left(\frac{1-x}{1+x}\right) \) is: \[ \frac{d}{dx} \tan^{-1}\left(\frac{1-x}{1+x}\right) = -\frac{1}{1+x^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

d/(dx)[tan^(-1)((a-x)/(1+ax))] is equal to

int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

Find the value of int_(-1)^(1)(d)/(dx)(tan^(-1)(1)/(x))dx

(d)/(dx)[tan^(-1)((6x)/(1+7x^(2)))]+(d)/(dx)[tan^(-1)((5+2x)/(2-5x))]=

(d)/(dx)[tan^(-1)((1)/(2x)-(x)/(2))]=

(d)/(dx)[tan^(-1)((10x)/(4-6x^(2)))]=

(d)/(dx)((1-tan x)/(1+tan x))*(d)/(dx)((1-tan x)/(1+tan x))

(d)/(dx)[tan{tan^(-1)((x)/(a))-tan^(-1)((x-a)/(x+a))}]=

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

TARGET PUBLICATION-DIFFERENTIATION -COMPETITIVE THINKING
  1. If f(x)=sqrt(1+cos^2(x^2)),thenf'(sqrtpi/2) is

    Text Solution

    |

  2. If : f(x)=(sin^(2)x)/(1+cotx)+(cos^(2)x)/(1+tanx)," then: "f'((pi)/(4)...

    Text Solution

    |

  3. d/(dx)tan^-1((1-x)/(1+x))=

    Text Solution

    |

  4. If y =tan ^(-1) ((sqrt( a) -sqrt(x)) /( 1+sqrt( ax)) ) ,then (dy)/(dx)...

    Text Solution

    |

  5. If y=tan^(-1)[(sinx-cosx)/(cosx-sinx)] then (dy)/(dx) is

    Text Solution

    |

  6. If y= tan ^(-1) ((acos x -bsin x )/( bcos x+asin x ) ) ,then (dy)/(dx...

    Text Solution

    |

  7. यदि y= sec tan ^(-1) x, तब (dy)/(dx) =

    Text Solution

    |

  8. the derivative of tan^-1 (6xsqrtx)/(1-9x^3) is sqrtx g(x) then g(x) is...

    Text Solution

    |

  9. If y= e^(m sin ^(-1)) x and (1-x^(2))((dy)/(dx))^(2)= Ay^(2). then ...

    Text Solution

    |

  10. If y=sin^(-1)[x(1-x)-sqrtxsqrt(1-x^(2))], find (dy)/(dx),

    Text Solution

    |

  11. Find (dy)/(dx) when(y-tan^(- 1))x/(1+sqrt(1-x^2))+sin[2tan^(- 1)sqrt((...

    Text Solution

    |

  12. If f(x)=cot^(-1)((x^(x)-x^(-x))/(2)) then f'(1) equals

    Text Solution

    |

  13. What is the derivative of tan^(-1)((sqrtx-x)/(1+x^(3//2))) at x = 1?

    Text Solution

    |

  14. If y=(tan^- 1)(sqrt(1+x^2)-1)/x, then y'(1) is equal to

    Text Solution

    |

  15. If y=(1+1/x)^x,then(dy)/(dx)=

    Text Solution

    |

  16. If y=(sinx)^(tanx),then(dy)/(dx) is equal to

    Text Solution

    |

  17. If y=(e^(2x)cosx)/(x sinx),then(dy)/(dx)=

    Text Solution

    |

  18. If y={f(x)}^(phi(x)),"then"(dy)/(dx) is

    Text Solution

    |

  19. If y=x^((logx)^(log(logx))), then (dy)/(dx) is

    Text Solution

    |

  20. If y=[(tanx)^(tanx)]^(tanx),then at x=pi/4 , the value of (dy)/(dx)=

    Text Solution

    |