Home
Class 12
MATHS
If y=(1+1/x)^x,then(dy)/(dx)=...

If `y=(1+1/x)^x,then(dy)/(dx)=`

A

`(1+1/x)^x[log(1+1/x)-1/(1+x)]`

B

`(1+1/x)^x[log(1+1/x)]`

C

`(x+1/x)^x[log(x-1)-x/(x-1)]`

D

`(1+1/x)^x[(1+1/x)+1/(1+x)]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) of the function \(y = \left(1 + \frac{1}{x}\right)^x\), we can use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides of the equation: \[ \ln y = \ln\left(\left(1 + \frac{1}{x}\right)^x\right) \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms that states \(\ln(a^b) = b \ln a\), we can simplify the right side: \[ \ln y = x \ln\left(1 + \frac{1}{x}\right) \] ### Step 3: Differentiate both sides Now we differentiate both sides with respect to \(x\). We will use the chain rule on the left side and the product rule on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}\left(x \ln\left(1 + \frac{1}{x}\right)\right) \] Using the product rule on the right side: \[ \frac{d}{dx}\left(x \ln\left(1 + \frac{1}{x}\right)\right) = \ln\left(1 + \frac{1}{x}\right) + x \cdot \frac{d}{dx}\left(\ln\left(1 + \frac{1}{x}\right)\right) \] ### Step 4: Differentiate \(\ln\left(1 + \frac{1}{x}\right)\) To differentiate \(\ln\left(1 + \frac{1}{x}\right)\), we use the chain rule: \[ \frac{d}{dx}\left(\ln\left(1 + \frac{1}{x}\right)\right) = \frac{1}{1 + \frac{1}{x}} \cdot \frac{d}{dx}\left(1 + \frac{1}{x}\right) \] The derivative of \(1 + \frac{1}{x}\) is \(-\frac{1}{x^2}\): \[ \frac{d}{dx}\left(\ln\left(1 + \frac{1}{x}\right)\right) = \frac{-\frac{1}{x^2}}{1 + \frac{1}{x}} = \frac{-1}{x^2 + x} \] ### Step 5: Substitute back into the derivative expression Now substitute this back into the expression we derived in Step 3: \[ \frac{1}{y} \frac{dy}{dx} = \ln\left(1 + \frac{1}{x}\right) - \frac{x}{x^2 + x} \] ### Step 6: Solve for \(\frac{dy}{dx}\) Multiply both sides by \(y\): \[ \frac{dy}{dx} = y\left(\ln\left(1 + \frac{1}{x}\right) - \frac{x}{x^2 + x}\right) \] ### Step 7: Substitute \(y\) back into the equation Recall that \(y = \left(1 + \frac{1}{x}\right)^x\): \[ \frac{dy}{dx} = \left(1 + \frac{1}{x}\right)^x\left(\ln\left(1 + \frac{1}{x}\right) - \frac{x}{x^2 + x}\right) \] ### Final Result Thus, the derivative \(\frac{dy}{dx}\) is: \[ \frac{dy}{dx} = \left(1 + \frac{1}{x}\right)^x\left(\ln\left(1 + \frac{1}{x}\right) - \frac{1}{x + 1}\right) \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

y=(1+x)/(1-x) then (dy)/(dx)

" 4.If "y=x+(1)/(x)," then "(dy)/(dx)=

1.If y =1+x+ x^(2) then (dy)/(dx)

x(dy)/(dx)-y=x+1

If y= x^((1)/(x)) ,then (dy)/(dx)=

If y=tan ^(-1) (sqrt( 1+x^(2))-x),then ( dy)/(dx)=

If y=((x+1)/(x))^(x)," then "(dy)/(dx)=

y=log ((1-sin x )/(1+sin x )),then (dy)/(dx) =

If y= sqrt ((1+sin x) /( 1-sin x) ,)then (dy)/(dx) =

If y= sqrt (x+(1)/( x) ),then (dy)/(dx) =