Home
Class 12
MATHS
If y=(sinx)^(tanx),then(dy)/(dx) is equa...

If `y=(sinx)^(tanx),then(dy)/(dx)` is equal to

A

`(sinx)^(tanx).[1+sec^2x.log(sinx)]`

B

`tanx.(sinx)^(tanx-1).cosx`

C

`(sinx)^(tanx).sec^2.x.log(sinx)`

D

`tanx.(sinx)^(tanx-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = (\sin x)^{\tan x} \), we can use logarithmic differentiation. Here’s a step-by-step solution: ### Step 1: Take the natural logarithm of both sides We start by taking the natural logarithm of both sides: \[ \ln y = \ln((\sin x)^{\tan x}) \] ### Step 2: Apply the power rule of logarithms Using the property of logarithms that states \( \ln(a^b) = b \ln a \), we can rewrite the right side: \[ \ln y = \tan x \cdot \ln(\sin x) \] ### Step 3: Differentiate both sides with respect to \( x \) Now, we differentiate both sides with respect to \( x \). Remember to use the product rule on the right side: \[ \frac{d}{dx}(\ln y) = \frac{d}{dx}(\tan x \cdot \ln(\sin x)) \] Using the chain rule on the left side: \[ \frac{1}{y} \frac{dy}{dx} = \frac{d}{dx}(\tan x) \cdot \ln(\sin x) + \tan x \cdot \frac{d}{dx}(\ln(\sin x)) \] ### Step 4: Differentiate the components Now we differentiate the components: 1. The derivative of \( \tan x \) is \( \sec^2 x \). 2. The derivative of \( \ln(\sin x) \) is \( \frac{\cos x}{\sin x} = \cot x \). Thus, we have: \[ \frac{1}{y} \frac{dy}{dx} = \sec^2 x \cdot \ln(\sin x) + \tan x \cdot \cot x \] ### Step 5: Simplify the expression Since \( \tan x \cdot \cot x = 1 \), we can simplify: \[ \frac{1}{y} \frac{dy}{dx} = \sec^2 x \cdot \ln(\sin x) + 1 \] ### Step 6: Solve for \( \frac{dy}{dx} \) Now, multiply both sides by \( y \) to isolate \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = y \left( \sec^2 x \cdot \ln(\sin x) + 1 \right) \] ### Step 7: Substitute back for \( y \) Recall that \( y = (\sin x)^{\tan x} \): \[ \frac{dy}{dx} = (\sin x)^{\tan x} \left( \sec^2 x \cdot \ln(\sin x) + 1 \right) \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = (\sin x)^{\tan x} \left( \sec^2 x \cdot \ln(\sin x) + 1 \right) \] ---
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

y=x^(tanx) then (dy)/(dx) is

If y=(tanx)^(cotx) , then (dy)/(dx) is equal to......

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=e^(sinx^(2)) then (dy)/(dx)=

If y = sqrt(sinx+y) , then (dy)/(dx) is equal to

If y=sinx and u=cosx, then (dy)/(du) is equal to

If y=f((3x+4)/(5x+6))andf'(x)=tanx^(2), then (dy)/(dx) is equal to

If y=log_(sinx)(tanx), then (dy)/ (dx) at x=(1)/(4) is equal to

If y=sinx/(1+cosx) then (dy)/(dx)=