Home
Class 12
MATHS
If y=(e^(2x)cosx)/(x sinx),then(dy)/(dx)...

If `y=(e^(2x)cosx)/(x sinx),then(dy)/(dx)`=

A

`(e^(2x)[(2x-1)cotx-xcosec^2x])/x^2`

B

`(e^(2x)[(2x+1)cotx-xcosec^2x])/x^2`

C

`(e^(2x)[(2x-1)cotx+xcosec^2x])/x^2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{e^{2x} \cos x}{x \sin x} \), we will use the quotient rule of differentiation. The quotient rule states that if \( y = \frac{u}{v} \), then \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] where \( u = e^{2x} \cos x \) and \( v = x \sin x \). ### Step 1: Identify \( u \) and \( v \) Let: - \( u = e^{2x} \cos x \) - \( v = x \sin x \) ### Step 2: Differentiate \( u \) and \( v \) Now we need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \). **Differentiating \( u \):** Using the product rule \( \frac{d(uv)}{dx} = u'v + uv' \): - \( u' = \frac{d}{dx}(e^{2x}) \cdot \cos x + e^{2x} \cdot \frac{d}{dx}(\cos x) \) - \( u' = 2e^{2x} \cos x - e^{2x} \sin x \) - Thus, \( \frac{du}{dx} = e^{2x} (2 \cos x - \sin x) \) **Differentiating \( v \):** Using the product rule again: - \( v' = \frac{d}{dx}(x) \cdot \sin x + x \cdot \frac{d}{dx}(\sin x) \) - \( v' = \sin x + x \cos x \) - Thus, \( \frac{dv}{dx} = \sin x + x \cos x \) ### Step 3: Apply the Quotient Rule Now we can apply the quotient rule: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Substituting the values we found: \[ \frac{dy}{dx} = \frac{(x \sin x)(e^{2x} (2 \cos x - \sin x)) - (e^{2x} \cos x)(\sin x + x \cos x)}{(x \sin x)^2} \] ### Step 4: Simplify the Expression Now, we simplify the numerator: 1. Expand the first term: \[ x \sin x \cdot e^{2x} (2 \cos x - \sin x) = e^{2x} x \sin x (2 \cos x - \sin x) \] 2. Expand the second term: \[ e^{2x} \cos x (\sin x + x \cos x) = e^{2x} \cos x \sin x + e^{2x} x \cos^2 x \] 3. Combine: \[ \frac{dy}{dx} = \frac{e^{2x} \left[ x \sin x (2 \cos x - \sin x) - (\cos x \sin x + x \cos^2 x) \right]}{(x \sin x)^2} \] ### Final Result Thus, the derivative \( \frac{dy}{dx} \) is: \[ \frac{dy}{dx} = \frac{e^{2x} \left[ x \sin x (2 \cos x - \sin x) - (\cos x \sin x + x \cos^2 x) \right]}{(x \sin x)^2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=tan^(-1)((sinx+cosx)/(cosx-sinx))," then "(dy)/(dx)" at "x=(pi)/(4)

If y=e^(sinx) then (dy)/(dx)=

If y=e^(x) sinx then calculate (dy)/(dx)

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=(x)^(cosx)+(cosx)^(sinx) , find (dy)/(dx).

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=e^(x)(cosx+sinx)," then "y_(2)-2y_(1)=

If y=log(sinx-cosx) , then (dy)/(dx) at x=(pi)/(2) is :

If y=|cosx|+|sinx| , then (dy)/(dx)" at "x=(2pi)/(3) is