Home
Class 12
MATHS
If y=x^((logx)^(log(logx))), then (dy)/(...

If `y=x^((logx)^(log(logx)))`, then `(dy)/(dx)` is

A

`(x logx)^(log(logx)){1/(xlogx)[logx+log(logx)]+log(logx)(1/x+1/(xlogx))}`

B

`(x logx)^(x logx)log(logx)[2/(logx)+1/x]`

C

`(x logx)^(x logx)(log(logx))/2[1/(logx)+1]`

D

None of these

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If y=x^((logx)^("log"(logdotx))),t h e n(dy)/(dx)i s (a)y/x(1n x^(oox-1))+21 nx1n(1nx)) (b)y/x(logx)^("log"(logx))(2log(logx)+1) (c)y/(x1nx)[(1nx)^2+21 n(1nx)] (d)y/x(logy)/(logx)[2log(logx)+1]

If y=log(log(logx^3)) then (dy)/(dx)=

If y=x^(n)logx+x(logx)^(n)," then "(dy)/(dx) is equal to

y=x^(logx)+(logx)^(x)

If y= (log x) ^(logx) ,then (dy)/(dx)=

If y=x^(logx)+(logx)^x then find (dy)/(dx)

y=logx/(a+bx) then (dy)/(dx)

If y=x^(logx) ,then (dy)/(dx)=

If y= ( log sin x) (logx ) ,then (dy)/(dx)