Home
Class 12
MATHS
If y=[(tanx)^(tanx)]^(tanx),then at x=pi...

If `y=[(tanx)^(tanx)]^(tanx)`,then at `x=pi/4` , the value of `(dy)/(dx)=`

A

0

B

1

C

2

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative \(\frac{dy}{dx}\) for the function \(y = (\tan x)^{\tan x}\) at \(x = \frac{\pi}{4}\), we will follow these steps: ### Step 1: Rewrite the function Given: \[ y = (\tan x)^{\tan x} \] We can express this as: \[ y = e^{\tan x \cdot \ln(\tan x)} \] ### Step 2: Take the natural logarithm Taking the natural logarithm on both sides: \[ \ln y = \tan x \cdot \ln(\tan x) \] ### Step 3: Differentiate both sides Now, we differentiate both sides with respect to \(x\): Using the product rule on the right side: \[ \frac{1}{y} \frac{dy}{dx} = \sec^2 x \cdot \ln(\tan x) + \tan x \cdot \frac{1}{\tan x} \cdot \sec^2 x \] This simplifies to: \[ \frac{1}{y} \frac{dy}{dx} = \sec^2 x \cdot \ln(\tan x) + \sec^2 x \] ### Step 4: Solve for \(\frac{dy}{dx}\) Multiplying both sides by \(y\): \[ \frac{dy}{dx} = y \left(\sec^2 x \cdot \ln(\tan x) + \sec^2 x\right) \] Substituting back \(y = (\tan x)^{\tan x}\): \[ \frac{dy}{dx} = (\tan x)^{\tan x} \left(\sec^2 x \cdot \ln(\tan x) + \sec^2 x\right) \] ### Step 5: Evaluate at \(x = \frac{\pi}{4}\) Now we evaluate \(\frac{dy}{dx}\) at \(x = \frac{\pi}{4}\): - \(\tan\left(\frac{\pi}{4}\right) = 1\) - \(\sec\left(\frac{\pi}{4}\right) = \sqrt{2}\) - \(\ln(1) = 0\) Substituting these values: \[ \frac{dy}{dx} = (1)^{1} \left(\sqrt{2} \cdot 0 + \sqrt{2}\right) \] This simplifies to: \[ \frac{dy}{dx} = \sqrt{2} \] ### Final Answer Thus, the value of \(\frac{dy}{dx}\) at \(x = \frac{\pi}{4}\) is: \[ \frac{dy}{dx} = \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

y=(tanx)^(cotx)+(cotx)^(tanx)

If y=lnsqrt(tanx), then what is the value of (dy)/(dx) at x=(pi)/(4)?

If y=(tanx)^((tanx)^((tanx)^...oo)), then prove that (dy)/(dx)=2 at x=(pi)/(4).

int(1-tanx)(1+tanx)dx

(dy)/(dx)+2tanx=0

inte^(x)tanx(1+tanx)dx=

int(1-tanx)/(1+tanx)dx=

If y=|tanx-|sinx|| , then the value of (dy)/(dx) at x=(5pi)/(4) is