Home
Class 12
MATHS
If xy=1+ log y and k (dy)/(dx)+y^2=0, th...

If `xy=1+ log y and k (dy)/(dx)+y^2=0`, then k is

A

`1+xy`

B

`1/(xy-1)`

C

`xy-1`

D

`1-2xy`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|30 Videos
  • DIFFERENTIATION

    TARGET PUBLICATION|Exercise HIGHER ORDER DERIVATIVES|32 Videos
  • DIFFERENTIAL EQUATIONS

    TARGET PUBLICATION|Exercise EVALUATION TEST|25 Videos
  • INTEGRATION

    TARGET PUBLICATION|Exercise EVALUATION TEST|29 Videos

Similar Questions

Explore conceptually related problems

If xy=1, prove that (dy)/(dx)+y^(2)=0

y(dy)/(dx)+x=k

if x=y log(xy) then (dx)/(dy)=

Let x^k+y^k =a^k, (a,k gt 0) and (dy)/(dx) +(y/x)^(5//3)=0 , then k=

If xy^(2)=1, prove that 2(dy)/(dx)+y^(3)=0

If xy^(2)=1, prove that 2(dy)/(dx)+y^(3)=0

If log (x+y) =log (xy ) +a, then (dy)/(dx) =

y log y (dx)/(dy) + x - log y =0

If x=y ln(xy), then (dy)/(dx) equals

Let (x)^(k) + (y)^(k) = (a)^(k) where a, k > 0 and (dy/dx) +(y/x)^(1/3) = 0 then find k